Question
upstudy study bank question image url

11) \( \begin{aligned}-3 x+7 y & =-16 \\ -9 x+5 y & =16\end{aligned} \)

Ask by Ray Rose. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( x = -4 \) and \( y = -4 \).

Solution

Solve the system of equations \( -3x+7y=-16;-9x+5y=16 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}-3x+7y=-16\\-9x+5y=16\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{16+7y}{3}\\-9x+5y=16\end{array}\right.\) - step2: Substitute the value of \(x:\) \(-9\times \frac{16+7y}{3}+5y=16\) - step3: Simplify: \(-48-16y=16\) - step4: Move the constant to the right side: \(-16y=16+48\) - step5: Add the numbers: \(-16y=64\) - step6: Change the signs: \(16y=-64\) - step7: Divide both sides: \(\frac{16y}{16}=\frac{-64}{16}\) - step8: Divide the numbers: \(y=-4\) - step9: Substitute the value of \(y:\) \(x=\frac{16+7\left(-4\right)}{3}\) - step10: Calculate: \(x=-4\) - step11: Calculate: \(\left\{ \begin{array}{l}x=-4\\y=-4\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}x=-4\\y=-4\end{array}\right.\) - step13: Rewrite: \(\left(x,y\right) = \left(-4,-4\right)\) The solution to the system of equations is \( x = -4 \) and \( y = -4 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the system of equations \(-3x + 7y = -16\) and \(-9x + 5y = 16\), we can use either substitution or elimination. Let's choose the elimination method! First, we can multiply the first equation by 3 to align the coefficients of \(x\): \[ \begin{aligned} -9x + 21y &= -48 \quad (1)\\ -9x + 5y &= 16 \quad (2) \end{aligned} \] Now, subtract equation (2) from equation (1): \[ (21y - 5y) = -48 - 16 \] \[ 16y = -64 \] \[ y = -4 \] Now that we have \(y\), let's substitute it back into one of the original equations to find \(x\). Using the first equation: \[ -3x + 7(-4) = -16 \] \[ -3x - 28 = -16 \] \[ -3x = 12 \] \[ x = -4 \] So, the solution to the system is \(x = -4\) and \(y = -4\). The solution set is \((x, y) = (-4, -4)\).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy