11) \( \begin{aligned}-3 x+7 y & =-16 \\ -9 x+5 y & =16\end{aligned} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the system of equations \(-3x + 7y = -16\) and \(-9x + 5y = 16\), we can use either substitution or elimination. Let's choose the elimination method! First, we can multiply the first equation by 3 to align the coefficients of \(x\): \[ \begin{aligned} -9x + 21y &= -48 \quad (1)\\ -9x + 5y &= 16 \quad (2) \end{aligned} \] Now, subtract equation (2) from equation (1): \[ (21y - 5y) = -48 - 16 \] \[ 16y = -64 \] \[ y = -4 \] Now that we have \(y\), let's substitute it back into one of the original equations to find \(x\). Using the first equation: \[ -3x + 7(-4) = -16 \] \[ -3x - 28 = -16 \] \[ -3x = 12 \] \[ x = -4 \] So, the solution to the system is \(x = -4\) and \(y = -4\). The solution set is \((x, y) = (-4, -4)\).
