Answer
The solutions are \( (x, y) = (1, -1) \) and \( (x, y) = (29, 6) \).
Solution
Solve the system of equations \( x^{2}-5x*y+y^{2}=7;x-4y=5 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x^{2}-5xy+y^{2}=7\\x-4y=5\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x^{2}-5xy+y^{2}=7\\x=5+4y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(\left(5+4y\right)^{2}-5\left(5+4y\right)y+y^{2}=7\)
- step3: Simplify:
\(25+15y-3y^{2}=7\)
- step4: Move the expression to the left side:
\(25+15y-3y^{2}-7=0\)
- step5: Subtract the numbers:
\(18+15y-3y^{2}=0\)
- step6: Factor the expression:
\(3\left(6-y\right)\left(1+y\right)=0\)
- step7: Divide the terms:
\(\left(6-y\right)\left(1+y\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&6-y=0\\&1+y=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&y=6\\&y=-1\end{align}\)
- step10: Calculate:
\(y=6\cup y=-1\)
- step11: Rearrange the terms:
\(\left\{ \begin{array}{l}x=5+4y\\y=6\end{array}\right.\cup \left\{ \begin{array}{l}x=5+4y\\y=-1\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=29\\y=6\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-1\end{array}\right.\)
- step13: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=29\\y=6\end{array}\right.\)
- step14: Check the solution:
\(\left\{ \begin{array}{l}x=1\\y=-1\end{array}\right.\cup \left\{ \begin{array}{l}x=29\\y=6\end{array}\right.\)
- step15: Rewrite:
\(\left(x,y\right) = \left(1,-1\right)\cup \left(x,y\right) = \left(29,6\right)\)
The solutions to the system of equations \(x^{2}-5xy+y^{2}=7\) and \(x-4y=5\) are \((x,y) = (1,-1)\) and \((x,y) = (29,6)\).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution