Answer
- For part e: 1
- For part f: \( \frac{a^{2} - 2a + 1}{a^{2}} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\frac{\left(a^{2}b-ab\right)}{\left(a^{3}+a^{2}\right)}}{\left(\frac{\left(a^{2}b-2ab+b\right)}{\left(a^{3}-a\right)}\right)}\)
- step1: Remove the parentheses:
\(\frac{\frac{a^{2}b-ab}{a^{3}+a^{2}}}{\frac{a^{2}b-2ab+b}{a^{3}-a}}\)
- step2: Divide the terms:
\(\frac{\frac{ab-b}{a^{2}+a}}{\frac{a^{2}b-2ab+b}{a^{3}-a}}\)
- step3: Divide the terms:
\(\frac{\frac{ab-b}{a^{2}+a}}{\frac{ab-b}{a^{2}+a}}\)
- step4: Divide the terms:
\(1\)
Calculate or simplify the expression \( (a^2 - 2*a + 1)/(a^2 + 2*a + 1) * (a^2 - 1)/(a^2) * (a^2 + a)/(a^2 - a) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\frac{\frac{\left(a^{2}-2a+1\right)}{\left(a^{2}+2a+1\right)}\times \left(a^{2}-1\right)}{a^{2}}\times \left(a^{2}+a\right)}{\left(a^{2}-a\right)}\)
- step1: Remove the parentheses:
\(\frac{\frac{\frac{a^{2}-2a+1}{a^{2}+2a+1}\times \left(a^{2}-1\right)}{a^{2}}\times \left(a^{2}+a\right)}{a^{2}-a}\)
- step2: Multiply the terms:
\(\frac{\frac{\frac{\left(a^{2}-2a+1\right)\left(a-1\right)}{a+1}}{a^{2}}\times \left(a^{2}+a\right)}{a^{2}-a}\)
- step3: Divide the terms:
\(\frac{\frac{\left(a^{2}-2a+1\right)\left(a-1\right)}{a^{2}\left(a+1\right)}\times \left(a^{2}+a\right)}{a^{2}-a}\)
- step4: Multiply the terms:
\(\frac{\frac{\left(a^{2}-2a+1\right)\left(a-1\right)}{a}}{a^{2}-a}\)
- step5: Multiply by the reciprocal:
\(\frac{\left(a^{2}-2a+1\right)\left(a-1\right)}{a}\times \frac{1}{a^{2}-a}\)
- step6: Rewrite the expression:
\(\frac{\left(a-1\right)^{2}\left(a-1\right)}{a}\times \frac{1}{a\left(a-1\right)}\)
- step7: Reduce the fraction:
\(\frac{\left(a-1\right)\left(a-1\right)}{a}\times \frac{1}{a}\)
- step8: Multiply the terms:
\(\frac{\left(a-1\right)^{2}}{a\times a}\)
- step9: Multiply the terms:
\(\frac{\left(a-1\right)^{2}}{a^{2}}\)
- step10: Calculate:
\(\frac{a^{2}-2a+1}{a^{2}}\)
Let's break down the solutions for both parts step by step.
### Part e
We need to simplify the expression:
\[
\frac{a^{2} b - a b}{a^{3} + a^{2}} \div \frac{a^{2} b - 2 a b + b}{a^{3} - a}
\]
1. **Simplify the first fraction:**
- The numerator: \( a^{2} b - a b = a b (a - 1) \)
- The denominator: \( a^{3} + a^{2} = a^{2}(a + 1) \)
- So, the first fraction becomes:
\[
\frac{a b (a - 1)}{a^{2}(a + 1)}
\]
2. **Simplify the second fraction:**
- The numerator: \( a^{2} b - 2 a b + b = b(a^{2} - 2a + 1) = b(a - 1)^{2} \)
- The denominator: \( a^{3} - a = a(a^{2} - 1) = a(a - 1)(a + 1) \)
- So, the second fraction becomes:
\[
\frac{b(a - 1)^{2}}{a(a - 1)(a + 1)}
\]
3. **Now, we can rewrite the division as multiplication by the reciprocal:**
\[
\frac{a b (a - 1)}{a^{2}(a + 1)} \times \frac{a(a - 1)(a + 1)}{b(a - 1)^{2}}
\]
4. **Cancel out common terms:**
- \( b \) cancels with \( b \)
- One \( (a - 1) \) cancels with one \( (a - 1) \)
- The \( a \) in the numerator cancels with one \( a \) in the denominator.
5. **Final simplification:**
- This results in:
\[
1
\]
### Part f
We need to simplify the expression:
\[
\frac{a^{2}-2a+1}{a^{2}+2a+1} \times \frac{a^{2}-1}{a^{2}} \times \frac{a^{2}+a}{a^{2}-a}
\]
1. **Factor each part:**
- The first fraction:
- \( a^{2} - 2a + 1 = (a - 1)^{2} \)
- \( a^{2} + 2a + 1 = (a + 1)^{2} \)
- The second fraction:
- \( a^{2} - 1 = (a - 1)(a + 1) \)
- The third fraction:
- \( a^{2} + a = a(a + 1) \)
- \( a^{2} - a = a(a - 1) \)
2. **Rewrite the expression with factored forms:**
\[
\frac{(a - 1)^{2}}{(a + 1)^{2}} \times \frac{(a - 1)(a + 1)}{a^{2}} \times \frac{a(a + 1)}{a(a - 1)}
\]
3. **Cancel out common terms:**
- The \( a \) cancels with \( a \)
- One \( (a - 1) \) cancels with one \( (a - 1) \)
- One \( (a + 1) \) cancels with one \( (a + 1) \)
4. **Final simplification:**
- This results in:
\[
\frac{a^{2} - 2a + 1}{a^{2}} = \frac{(a - 1)^{2}}{a^{2}}
\]
### Final Answers
- For part e: \( 1 \)
- For part f: \( \frac{a^{2} - 2a + 1}{a^{2}} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution