Question
upstudy study bank question image url

b. If \( \cos 36^{\circ}=k \), deformine the following in term of \( k \). a) \( \cos \left(-36^{\circ}\right) \) b) \( \cos 77^{\circ} \) c) \( \sin 36^{\circ} \) d) \( \sin 72^{\circ} \) c) \( \tan 36^{\circ} \)

Ask by Chambers John. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( \cos(-36^{\circ}) = k \) b) \( \cos(77^{\circ}) = \sin(13^{\circ}) \) c) \( \sin(36^{\circ}) = \sqrt{1 - k^2} \) d) \( \sin(72^{\circ}) = 2k^2 - 1 \) e) \( \tan(36^{\circ}) = \frac{\sqrt{1 - k^2}}{k} \)

Solution

To express the trigonometric functions in terms of \( k \) where \( k = \cos 36^{\circ} \), we can use the properties of trigonometric functions. ### a) \( \cos \left(-36^{\circ}\right) \) Using the even property of cosine: \[ \cos(-x) = \cos(x) \] Thus, \[ \cos(-36^{\circ}) = \cos(36^{\circ}) = k \] ### b) \( \cos 77^{\circ} \) Using the co-function identity: \[ \cos(90^{\circ} - x) = \sin(x) \] We can express \( \cos 77^{\circ} \) as: \[ \cos(77^{\circ}) = \sin(13^{\circ}) \] Now, we can use the sine identity: \[ \sin(36^{\circ}) = \sqrt{1 - \cos^2(36^{\circ})} = \sqrt{1 - k^2} \] Using the sine addition formula, we can find \( \sin(13^{\circ}) \) in terms of \( k \) but it requires additional calculations. For now, we will leave it as \( \sin(13^{\circ}) \). ### c) \( \sin 36^{\circ} \) Using the Pythagorean identity: \[ \sin^2(x) + \cos^2(x) = 1 \] We can express \( \sin(36^{\circ}) \) as: \[ \sin(36^{\circ}) = \sqrt{1 - \cos^2(36^{\circ})} = \sqrt{1 - k^2} \] ### d) \( \sin 72^{\circ} \) Using the co-function identity: \[ \sin(90^{\circ} - x) = \cos(x) \] Thus, \[ \sin(72^{\circ}) = \cos(18^{\circ}) \] To express \( \cos(18^{\circ}) \) in terms of \( k \), we can use the double angle formula: \[ \cos(2x) = 2\cos^2(x) - 1 \] Let \( x = 36^{\circ} \): \[ \cos(72^{\circ}) = 2\cos^2(36^{\circ}) - 1 = 2k^2 - 1 \] Thus, \[ \sin(72^{\circ}) = 2k^2 - 1 \] ### e) \( \tan 36^{\circ} \) Using the definition of tangent: \[ \tan(x) = \frac{\sin(x)}{\cos(x)} \] Thus, \[ \tan(36^{\circ}) = \frac{\sin(36^{\circ})}{\cos(36^{\circ})} = \frac{\sqrt{1 - k^2}}{k} \] ### Summary of Results - a) \( \cos(-36^{\circ} ) = k \) - b) \( \cos(77^{\circ}) = \sin(13^{\circ}) \) (not expressed in terms of \( k \) directly) - c) \( \sin(36^{\circ}) = \sqrt{1 - k^2} \) - d) \( \sin(72^{\circ}) = 2k^2 - 1 \) - e) \( \tan(36^{\circ}) = \frac{\sqrt{1 - k^2}}{k} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Sure! Let's express the given angles in terms of \( k \). a) \( \cos \left(-36^{\circ}\right) = \cos 36^{\circ} = k \) (since cosine is an even function). b) \( \cos 77^{\circ} = \cos(90^{\circ}-13^{\circ}) = \sin 13^{\circ} \), and using the identity \( \sin(90^{\circ}-x) = \cos x \), we get \( \cos 77^{\circ} = \sin(90^{\circ}-36^{\circ}) = \sin 36^{\circ} = \sqrt{1 - k^2} \). c) To express \( \sin 36^{\circ} \) in terms of \( k \), we apply the Pythagorean identity: \( \sin^2 36^{\circ} + \cos^2 36^{\circ} = 1 \). This gives us \( \sin 36^{\circ} = \sqrt{1 - k^2} \). d) \( \sin 72^{\circ} = \cos 18^{\circ} \), and using the identity for cosine, we can express this in terms of \( k \) if we use \( \sin 72^{\circ} = 2 \sin 36^{\circ} \cos 36^{\circ} = 2 \cdot \sqrt{1 - k^2} \cdot k \). e) For \( \tan 36^{\circ} \), we use the definition \( \tan x = \frac{\sin x}{\cos x} \). Thus, \( \tan 36^{\circ} = \frac{\sin 36^{\circ}}{\cos 36^{\circ}} = \frac{\sqrt{1 - k^2}}{k} \). Summarizing everything, we'd have the relationships of each of those values in terms of \( k \). Happy calculating!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy