Question
upstudy study bank question image url

Obtener las matrices \( A \) y B que verifica el sistema: \( -3 A+2 B=\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & 1 & 0\end{array}\right] \) \( 2 A+-2 B=\left[\begin{array}{ccc}0 & -1 & -2 \\ -1 & 0 & -2\end{array}\right] \)

Ask by Evans Crawford. in Colombia
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

Las matrices \( A \) y \( B \) que verifican el sistema son: \[ A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & \frac{3}{2} & 1 \\ \frac{1}{2} & -1 & 3 \end{bmatrix} \]

Solution

Para resolver el sistema de ecuaciones matriciales dado por: \[ -3 A + 2 B = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix} \] \[ 2 A - 2 B = \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & -2 \end{bmatrix} \] podemos reescribir las ecuaciones para despejar \( A \) y \( B \). Primero, simplificamos la segunda ecuación: \[ 2 A - 2 B = \begin{bmatrix} 0 & -1 & -2 \\ -1 & 0 & -2 \end{bmatrix} \] Dividimos toda la ecuación por 2: \[ A - B = \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} \] Ahora, podemos expresar \( A \) en términos de \( B \): \[ A = B + \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} \] Sustituyendo esta expresión de \( A \) en la primera ecuación: \[ -3(B + \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix}) + 2B = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix} \] Desarrollamos la ecuación: \[ -3B - 3\begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} + 2B = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix} \] Simplificamos: \[ (-3B + 2B) - 3\begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix} \] \[ -B - 3\begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix} \] Calculamos \( -3\begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} \): \[ -3\begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{3}{2} & 3 \\ \frac{3}{2} & 0 & 3 \end{bmatrix} \] Sustituyendo esto en la ecuación: \[ -B + \begin{bmatrix} 0 & \frac{3}{2} & 3 \\ \frac{3}{2} & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix} \] Despejamos \( B \): \[ -B = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & \frac{3}{2} & 3 \\ \frac{3}{2} & 0 & 3 \end{bmatrix} \] Realizamos la resta: \[ -B = \begin{bmatrix} 1 & 0 - \frac{3}{2} & 2 - 3 \\ 1 - \frac{3}{2} & 1 & 0 - 3 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{3}{2} & -1 \\ -\frac{1}{2} & 1 & -3 \end{bmatrix} \] Por lo tanto, multiplicamos por -1: \[ B = \begin{bmatrix} -1 & \frac{3}{2} & 1 \\ \frac{1}{2} & -1 & 3 \end{bmatrix} \] Ahora sustituimos \( B \) en la expresión de \( A \): \[ A = B + \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} \] Calculamos \( A \): \[ A = \begin{bmatrix} -1 & \frac{3}{2} & 1 \\ \frac{1}{2} & -1 & 3 \end{bmatrix} + \begin{bmatrix} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end{bmatrix} \] Realizamos la suma: \[ A = \begin{bmatrix} -1 & \frac{3}{2} - \frac{1}{2} & 1 - 1 \\ \frac{1}{2} - \frac{1}{2} & -1 & 3 - 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix} \] Finalmente, tenemos las matrices \( A \) y \( B \): \[ A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & \frac{3}{2} & 1 \\ \frac{1}{2} & -1 & 3 \end{bmatrix} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver este sistema de ecuaciones de matrices, podemos usar las dos ecuaciones dadas para eliminar una de las matrices \( A \) o \( B \). Comencemos con las ecuaciones: 1. \( -3 A + 2 B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \) 2. \( 2 A - 2 B = \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \) Podemos reorganizar la segunda ecuación: \[ 2 A = 2 B + \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Ahora, despejando \( A \): \[ A = B + \frac{1}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Sustituyendo \( A \) en la primera ecuación: \[ -3 \left( B + \frac{1}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \right) + 2B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Desarrollamos: \[ -3B - \frac{3}{2}\left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] + 2B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Simplificamos: \[ (-3B + 2B) - \frac{3}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Lo que nos da: \[ -B - \frac{3}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Sumando y resolviendo para \( B \): \[ B = -\left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] + \frac{3}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Calculamos: \[ B = -\left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] + \left[\begin{array}{ccc} 0 & -\frac{3}{2} & -3 \\ -\frac{3}{2} & 0 & -3 \end{array}\right] \] \[ B = \left[\begin{array}{ccc} -1 & \frac{3}{2} & -1 \\ -\frac{1}{2} & 1 & 3 \end{array}\right] \] Usamos \( B \) para encontrar \( A \): \[ A = B + \frac{1}{2}\left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Calculamos \( A \): \[ A = \left[\begin{array}{ccc} -1 & \frac{3}{2} & -1 \\ -\frac{1}{2} & 1 & 3 \end{array}\right] + \left[\begin{array}{ccc} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy