Obtener las matrices \( A \) y B que verifica el sistema: \( -3 A+2 B=\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & 1 & 0\end{array}\right] \) \( 2 A+-2 B=\left[\begin{array}{ccc}0 & -1 & -2 \\ -1 & 0 & -2\end{array}\right] \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Para resolver este sistema de ecuaciones de matrices, podemos usar las dos ecuaciones dadas para eliminar una de las matrices \( A \) o \( B \). Comencemos con las ecuaciones: 1. \( -3 A + 2 B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \) 2. \( 2 A - 2 B = \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \) Podemos reorganizar la segunda ecuación: \[ 2 A = 2 B + \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Ahora, despejando \( A \): \[ A = B + \frac{1}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Sustituyendo \( A \) en la primera ecuación: \[ -3 \left( B + \frac{1}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \right) + 2B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Desarrollamos: \[ -3B - \frac{3}{2}\left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] + 2B = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Simplificamos: \[ (-3B + 2B) - \frac{3}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Lo que nos da: \[ -B - \frac{3}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] \] Sumando y resolviendo para \( B \): \[ B = -\left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] + \frac{3}{2} \left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Calculamos: \[ B = -\left[\begin{array}{ccc} 1 & 0 & 2 \\ 1 & 1 & 0 \end{array}\right] + \left[\begin{array}{ccc} 0 & -\frac{3}{2} & -3 \\ -\frac{3}{2} & 0 & -3 \end{array}\right] \] \[ B = \left[\begin{array}{ccc} -1 & \frac{3}{2} & -1 \\ -\frac{1}{2} & 1 & 3 \end{array}\right] \] Usamos \( B \) para encontrar \( A \): \[ A = B + \frac{1}{2}\left[\begin{array}{ccc} 0 & -1 & -2 \\ -1 & 0 & -2 \end{array}\right] \] Calculamos \( A \): \[ A = \left[\begin{array}{ccc} -1 & \frac{3}{2} & -1 \\ -\frac{1}{2} & 1 & 3 \end{array}\right] + \left[\begin{array}{ccc} 0 & -\frac{1}{2} & -1 \\ -\frac{1}{2} & 0 & -1 \end
