Answer
The simplified form of the expression is 4.
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(3.2^{m}-4.2^{m-2}\right)}{\left(2^{m}-2^{m-1}\right)}\)
- step1: Remove the parentheses:
\(\frac{3.2^{m}-4.2^{m-2}}{2^{m}-2^{m-1}}\)
- step2: Convert the expressions:
\(\frac{\left(\frac{16}{5}\right)^{m}-4.2^{m-2}}{2^{m}-2^{m-1}}\)
- step3: Convert the expressions:
\(\frac{\left(\frac{16}{5}\right)^{m}-\left(\frac{21}{5}\right)^{m-2}}{2^{m}-2^{m-1}}\)
- step4: Subtract the terms:
\(\frac{\left(\frac{16}{5}\right)^{m}-\left(\frac{21}{5}\right)^{m-2}}{2^{m-1}}\)
- step5: Expand the expression:
\(\frac{\frac{16^{m}-25\times 21^{m-2}}{5^{m}}}{2^{m-1}}\)
- step6: Multiply by the reciprocal:
\(\frac{16^{m}-25\times 21^{m-2}}{5^{m}}\times \frac{1}{2^{m-1}}\)
- step7: Multiply the terms:
\(\frac{16^{m}-25\times 21^{m-2}}{5^{m}\times 2^{m-1}}\)
To simplify the expression
\[
\frac{3.2^{m}-4.2^{m-2}}{2^{m}-2^{m-1}},
\]
we can follow these steps:
1. **Simplify the denominator**:
The denominator \(2^{m} - 2^{m-1}\) can be factored as follows:
\[
2^{m} - 2^{m-1} = 2^{m-1}(2 - 1) = 2^{m-1}.
\]
2. **Simplify the numerator**:
The numerator \(3.2^{m} - 4.2^{m-2}\) can be rewritten by factoring out \(2^{m-2}\):
\[
3.2^{m} - 4.2^{m-2} = 2^{m-2}(3.2^{2} - 4) = 2^{m-2}(3 \cdot 4 - 4) = 2^{m-2}(12 - 4) = 2^{m-2} \cdot 8 = 8 \cdot 2^{m-2}.
\]
3. **Combine the results**:
Now we can substitute the simplified numerator and denominator back into the expression:
\[
\frac{8 \cdot 2^{m-2}}{2^{m-1}}.
\]
4. **Further simplification**:
This simplifies to:
\[
8 \cdot \frac{2^{m-2}}{2^{m-1}} = 8 \cdot 2^{-1} = \frac{8}{2} = 4.
\]
Thus, the simplified form of the original expression is
\[
4.
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution