Answer
The solutions are \( (0, -2) \) and \( (3, 4) \).
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}4x^{2}-7xy+4y^{2}-16=0\\y-2x+2=0\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}4x^{2}-7xy+4y^{2}-16=0\\y=2x-2\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(4x^{2}-7x\left(2x-2\right)+4\left(2x-2\right)^{2}-16=0\)
- step3: Simplify:
\(6x^{2}-18x=0\)
- step4: Factor the expression:
\(6x\left(x-3\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&6x=0\\&x-3=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&x=0\\&x=3\end{align}\)
- step7: Calculate:
\(x=0\cup x=3\)
- step8: Rearrange the terms:
\(\left\{ \begin{array}{l}x=0\\y=2x-2\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=2x-2\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}x=0\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=4\end{array}\right.\)
- step10: Check the solution:
\(\left\{ \begin{array}{l}x=0\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=4\end{array}\right.\)
- step11: Rewrite:
\(\left(x,y\right) = \left(0,-2\right)\cup \left(x,y\right) = \left(3,4\right)\)
Solve the system of equations \( 4 x^{2}-7 x y+4 y^{2}-16=0; y=2 x-2 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}4x^{2}-7xy+4y^{2}-16=0\\y=2x-2\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(4x^{2}-7x\left(2x-2\right)+4\left(2x-2\right)^{2}-16=0\)
- step2: Simplify:
\(6x^{2}-18x=0\)
- step3: Factor the expression:
\(6x\left(x-3\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&6x=0\\&x-3=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=0\\&x=3\end{align}\)
- step6: Calculate:
\(x=0\cup x=3\)
- step7: Rearrange the terms:
\(\left\{ \begin{array}{l}x=0\\y=2x-2\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=2x-2\end{array}\right.\)
- step8: Calculate:
\(\left\{ \begin{array}{l}x=0\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=4\end{array}\right.\)
- step9: Check the solution:
\(\left\{ \begin{array}{l}x=0\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=3\\y=4\end{array}\right.\)
- step10: Rewrite:
\(\left(x,y\right) = \left(0,-2\right)\cup \left(x,y\right) = \left(3,4\right)\)
We have the following system of equations:
1. \( 4 x^{2} - 7 x y + 4 y^{2} = 16 \)
2. \( y = 2 x - 2 \)
To solve this system, we can substitute the second equation into the first equation.
### Step 1: Substitute \( y \) in the first equation
Substituting \( y = 2x - 2 \) into the first equation:
\[
4 x^{2} - 7 x (2x - 2) + 4 (2x - 2)^{2} = 16
\]
### Step 2: Expand and simplify
Now, let's expand and simplify the equation:
1. Expand \( -7x(2x - 2) \):
\[
-7x(2x - 2) = -14x^{2} + 14x
\]
2. Expand \( 4(2x - 2)^{2} \):
\[
4(2x - 2)^{2} = 4(4x^{2} - 8x + 4) = 16x^{2} - 32x + 16
\]
Now, substituting these back into the equation gives:
\[
4x^{2} - 14x^{2} + 14x + 16x^{2} - 32x + 16 = 16
\]
### Step 3: Combine like terms
Combining like terms results in:
\[
(4x^{2} - 14x^{2} + 16x^{2}) + (14x - 32x) + 16 = 16
\]
This simplifies to:
\[
6x^{2} - 18x + 16 = 16
\]
### Step 4: Set the equation to zero
Subtract 16 from both sides:
\[
6x^{2} - 18x = 0
\]
### Step 5: Factor the equation
Factoring out \( 6x \):
\[
6x(x - 3) = 0
\]
### Step 6: Solve for \( x \)
Setting each factor to zero gives:
1. \( 6x = 0 \) → \( x = 0 \)
2. \( x - 3 = 0 \) → \( x = 3 \)
### Step 7: Find corresponding \( y \) values
Now, substitute these \( x \) values back into the equation \( y = 2x - 2 \):
1. For \( x = 0 \):
\[
y = 2(0) - 2 = -2
\]
So, one solution is \( (0, -2) \).
2. For \( x = 3 \):
\[
y = 2(3) - 2 = 6 - 2 = 4
\]
So, another solution is \( (3, 4) \).
### Final Solutions
The solutions to the system of equations are:
\[
(x, y) = (0, -2) \cup (3, 4)
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution