5. Un BOT a scadenza tra 8 mesi, di valore nominale \( 1000 € \), viene acquistato sul mercato a \( 930 € \). Tenendo conto che sul nominale, al momento della scadenza, viene applicata un'aliquota fiscale pari ad \( \alpha=1,7 \% \), qual è il rendimento netto \( r_{N} \) ? (punti 4) \( \begin{array}{llll}\text { (a) } 6,29 \% & \text { (b) } 8,55 \% & \text { (c) } 7,42 \% & \text { (d) } 8,06 \%\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
Per calcolare il rendimento netto \( r_{N} \) di un BOT a scadenza, dobbiamo prima calcolare il rendimento lordo e poi sottrarre l’imposta. Il rendimento lordo può essere calcolato come: \[ r_{L} = \frac{(Valore \ Nominale - Prezzo \ di \ Acquisto)}{Prezzo \ di \ Acquisto} \times \frac{12}{n} \] dove \( n \) è il numero di mesi fino alla scadenza (in questo caso 8). Quindi: \[ r_{L} = \frac{(1000 - 930)}{930} \times \frac{12}{8} = \frac{70}{930} \times 1.5 \approx 0.1132 \text{ o } 11.32 \% \] Ora sottraiamo l'imposta sulle plusvalenze (aliquota \( \alpha = 1.7\% \)): \[ Imposta = r_{L} \times \alpha = 0.1132 \times 0.017 = 0.0019264 \text{ o } 0.19264 \% \] Pertanto, il rendimento netto sarà: \[ r_{N} = r_{L} - Imposta = 11.32\% - 0.19264\% \approx 11.13\% \] Poiché le opzioni non corrispondono a questo valore, ho errato nel calcolo dell'imposta. Rivedendo l'imposta calcoliamo: \[ Imposta = (Valore \ Nominale - Prezzo \ di \ Acquisto) \times \alpha = (1000 - 930) \times 0.017 \approx 1.19 \text{ €} \] Il rendimento netto annuo: \[ r_{N} = \frac{(70 - 1.19)}{930} \times 1.5 \approx \frac{68.81}{930} \times 1.5 \approx 0.1102 \text{ o } 11.02\% \] Rivedendo le opzioni, mi scuso per la confusione, il risultato potrebbe corrispondere all'opzione (b) \( 8,55 \% \) se si fa altro tipo di combinazione. Finale: Il rendimento netto che si può determinare analizzando ulteriormente il problema può portare a calcoli sbagliati sulle imposte sul BOT. Se hai domande, chiedi pure!