Simplify \( \frac{\sqrt{x^{3} y^{2}}}{\sqrt{9 x^{7}}} \) \( \frac{y^{2}}{3 x} \) \( \frac{y^{2}}{3 x^{2}} \) \( \frac{y}{3 x^{2}} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To simplify \( \frac{\sqrt{x^{3} y^{2}}}{\sqrt{9 x^{7}}} \), we can combine the square roots: \[ \frac{\sqrt{x^{3} y^{2}}}{\sqrt{9 x^{7}}} = \sqrt{\frac{x^{3} y^{2}}{9 x^{7}}} \] Next, simplify the fraction inside the square root: \[ \frac{x^{3} y^{2}}{9 x^{7}} = \frac{y^{2}}{9} \cdot \frac{x^{3}}{x^{7}} = \frac{y^{2}}{9} \cdot \frac{1}{x^{4}} = \frac{y^{2}}{9 x^{4}} \] Now, taking the square root: \[ \sqrt{\frac{y^{2}}{9 x^{4}}} = \frac{\sqrt{y^{2}}}{\sqrt{9} \cdot \sqrt{x^{4}}} = \frac{y}{3 x^{2}} \] Thus, the simplified form of \( \frac{\sqrt{x^{3} y^{2}}}{\sqrt{9 x^{7}}} \) is \[ \frac{y}{3 x^{2}} \] So, the final answer is \( \frac{y}{3 x^{2}} \).