Answer
(a) \( \theta = 30^\circ + k \cdot 360^\circ \), \( \theta = 150^\circ + k \cdot 360^\circ \), \( \theta = 90^\circ + k \cdot 180^\circ \), where \( k \) is an integer.
(b) \( \theta = 67.5^\circ + k \cdot 90^\circ \), where \( k \) is an integer.
(c) \( \theta = 90^\circ + k \cdot 180^\circ \), where \( k \) is an integer.
(d) Solve \( 2\sin^2 \theta + \sin \theta \cos \theta - 1 = 0 \) for \( \theta \).
(e) Solve \( 2\cos^2 \theta - 4\sin \theta - 4 = 0 \) for \( \theta \).
(f) Solve \( \cos(x + 30^\circ) = \cos(2x - 60^\circ) \) for \( x \).
(d) No real solutions for \( \theta \in [90^\circ, 270^\circ] \).
Solution
To solve the equations and prove the statement, we will go through each part step by step.
### (a) Solve \( \sin 2\theta = \cos \theta \)
Using the double angle identity, we have:
\[
\sin 2\theta = 2 \sin \theta \cos \theta
\]
Thus, the equation becomes:
\[
2 \sin \theta \cos \theta = \cos \theta
\]
Assuming \( \cos \theta \neq 0 \), we can divide both sides by \( \cos \theta \):
\[
2 \sin \theta = 1 \implies \sin \theta = \frac{1}{2}
\]
The general solution for \( \sin \theta = \frac{1}{2} \) is:
\[
\theta = 30^\circ + k \cdot 360^\circ \quad \text{or} \quad \theta = 150^\circ + k \cdot 360^\circ, \quad k \in \mathbb{Z}
\]
Now, consider the case when \( \cos \theta = 0 \):
\[
\theta = 90^\circ + k \cdot 180^\circ, \quad k \in \mathbb{Z}
\]
Thus, the general solution for (a) is:
\[
\theta = 30^\circ + k \cdot 360^\circ, \quad \theta = 150^\circ + k \cdot 360^\circ, \quad \theta = 90^\circ + k \cdot 180^\circ, \quad k \in \mathbb{Z}
\]
### (b) Solve \( \sin 2\theta = -\cos 2\theta \)
Using the double angle identity:
\[
\sin 2\theta = -\cos 2\theta \implies \tan 2\theta = -1
\]
The general solution for \( \tan 2\theta = -1 \) is:
\[
2\theta = 135^\circ + k \cdot 180^\circ \implies \theta = 67.5^\circ + k \cdot 90^\circ, \quad k \in \mathbb{Z}
\]
### (c) Solve \( \sin 2\theta = 2 \cos \theta \)
Using the double angle identity:
\[
2 \sin \theta \cos \theta = 2 \cos \theta
\]
Assuming \( \cos \theta \neq 0 \):
\[
\sin \theta = 1 \implies \theta = 90^\circ + k \cdot 360^\circ, \quad k \in \mathbb{Z}
\]
If \( \cos \theta = 0 \):
\[
\theta = 90^\circ + k \cdot 180^\circ, \quad k \in \mathbb{Z}
\]
Thus, the general solution for (c) is:
\[
\theta = 90^\circ + k \cdot 180^\circ, \quad k \in \mathbb{Z}
\]
### (d) Solve \( \sin 2\theta = 2 \cos 2\theta \)
Using the double angle identity:
\[
2 \sin \theta \cos \theta = 2(1 - 2\sin^2 \theta)
\]
This simplifies to:
\[
\sin \theta \cos \theta = 1 - 2\sin^2 \theta
\]
Rearranging gives:
\[
2\sin^2 \theta + \sin \theta \cos \theta - 1 = 0
\]
This is a quadratic in \( \sin \theta \). Let \( x = \sin \theta \):
\[
2x^2 + x\sqrt{1-x^2} - 1 = 0
\]
This requires solving for \( x \) and substituting back to find \( \theta \).
### (e) Solve \( \cos 2\theta = 4 \sin \theta + 3 \)
Using the double angle identity:
\[
2\cos^2 \theta - 1 = 4 \sin \theta + 3
\]
This simplifies to:
\[
2\cos^2 \theta - 4\sin \theta - 4 = 0
\]
Substituting \( \cos^2 \theta = 1 - \sin^2 \theta \) leads to a quadratic in \( \sin \theta \).
### (f) Solve \( \cos(4x + 10^\circ) \cos(20^\circ - 3x) - \sin(4x + 10^\circ) \sin(20^\circ - 3x) = \cos(2x - 60^\circ) \)
Using the cosine addition formula:
\[
\cos(A + B) = \cos A \cos B - \sin A \sin B
\]
This gives:
\[
\cos((4x + 10^\circ) + (20^\circ - 3x)) = \cos(2x - 60^\circ)
\]
Simplifying leads to:
\[
\cos(x + 30^\circ) = \cos(2x - 60^\circ)
\]
This can be solved using the properties of cosine.
### Prove \( 4 \sin^2 \theta - 11 \cos \theta = 1 \) has no real solution for \( \theta \in [90^\circ, 270^\circ] \)
Rearranging gives:
\[
4 \sin^2 \theta = 11 \cos \theta + 1
\]
Using \( \sin^2 \theta + \cos^2 \theta = 1 \):
\[
4(1 - \cos^2 \theta) = 11 \cos \theta + 1
\]
This leads to:
\[
4 - 4\cos^2 \theta = 11 \cos \theta + 1
\]
Rearranging gives:
\[
4\cos^2 \theta + 11 \cos \theta - 3 = 0
\]
Using the discriminant:
\[
D = 11^2 - 4 \cdot 4 \cdot (-3) = 121 + 48 = 169
\]
The roots are:
\[
\cos \theta = \frac{-11 \pm 13}{8} \implies \cos \theta = \frac{1}{4} \text{ or } \cos \theta = -3
\]
Since \( \cos \theta = -3 \) is not possible, we only consider \( \cos \theta = \frac{1}{4} \).
In the interval \( [90^\circ, 270^\circ] \), \( \cos \theta \) is negative, thus there are no real solutions in this interval.
### Summary of Solutions
- (a)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution