0) \( \frac{1}{2} p^{8} \cdot 8 q^{5} \cdot \frac{r^{4}}{4 p^{4} q} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To simplify the expression \( \frac{1}{2} p^{8} \cdot 8 q^{5} \cdot \frac{r^{4}}{4 p^{4} q} \), we first address each component step-by-step. 1. **Combine the constants**: \[ \frac{1}{2} \cdot 8 \cdot \frac{1}{4} = \frac{8}{8} = 1 \] 2. **Combine the powers of \( p \)**: \[ p^{8} \cdot \frac{1}{p^{4}} = p^{8-4} = p^{4} \] 3. **Combine the powers of \( q \)**: \[ q^{5} \cdot \frac{1}{q} = q^{5-1} = q^{4} \] Now, putting all this together, we have: \[ 1 \cdot p^{4} \cdot q^{4} \cdot r^{4} = p^{4} q^{4} r^{4} \] So, the simplified expression is: \[ p^{4} q^{4} r^{4} \]