Question
upstudy study bank question image url

Calculate the double integral \( \iint_{\mathbf{R}} x \cos (2 x+y) d A \) where \( \mathbf{R} \) is the region: \( 0 \leq x \leq \frac{\pi}{3}, 0 \leq y \leq \frac{\pi}{2} \)

Ask by Burgess Burgess. in the United States
Mar 17,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The value of the double integral is \(\frac{\pi \sqrt{3}}{12} - \frac{1}{8} - \frac{\pi}{12} + \frac{\sqrt{3}}{8}\).

Solution

To calculate the double integral \[ \iint_{\mathbf{R}} x \cos (2x + y) \, dA \] where the region \(\mathbf{R}\) is defined by \(0 \leq x \leq \frac{\pi}{3}\) and \(0 \leq y \leq \frac{\pi}{2}\), we can express the double integral as: \[ \int_0^{\frac{\pi}{3}} \int_0^{\frac{\pi}{2}} x \cos(2x + y) \, dy \, dx \] ### Step 1: Integrate with respect to \(y\) First, we will integrate the inner integral with respect to \(y\): \[ \int_0^{\frac{\pi}{2}} x \cos(2x + y) \, dy \] To perform this integration, we can use the fact that the integral of \(\cos\) is \(\sin\): \[ \int \cos(2x + y) \, dy = \sin(2x + y) + C \] Now, we evaluate the definite integral: \[ \int_0^{\frac{\pi}{2}} x \cos(2x + y) \, dy = x \left[ \sin(2x + y) \right]_0^{\frac{\pi}{2}} \] Calculating the limits: \[ = x \left( \sin(2x + \frac{\pi}{2}) - \sin(2x) \right) \] Using the identity \(\sin(a + \frac{\pi}{2}) = \cos(a)\): \[ = x \left( \cos(2x) - \sin(2x) \right) \] ### Step 2: Integrate with respect to \(x\) Now we need to integrate the result with respect to \(x\): \[ \int_0^{\frac{\pi}{3}} x \left( \cos(2x) - \sin(2x) \right) \, dx \] This can be split into two separate integrals: \[ \int_0^{\frac{\pi}{3}} x \cos(2x) \, dx - \int_0^{\frac{\pi}{3}} x \sin(2x) \, dx \] ### Step 3: Calculate each integral 1. **Integral of \(x \cos(2x)\)**: Using integration by parts, let \(u = x\) and \(dv = \cos(2x) \, dx\). Then \(du = dx\) and \(v = \frac{1}{2} \sin(2x)\). Applying integration by parts: \[ \int x \cos(2x) \, dx = \frac{1}{2} x \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx \] The integral of \(\sin(2x)\) is \(-\frac{1}{2} \cos(2x)\): \[ = \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) + C \] Evaluating from \(0\) to \(\frac{\pi}{3}\): \[ \left[ \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) \right]_0^{\frac{\pi}{3}} \] Calculating at the limits: At \(x = \frac{\pi}{3}\): \[ = \frac{1}{2} \cdot \frac{\pi}{3} \cdot \sin\left(\frac{2\pi}{3}\right) + \frac{1}{4} \cos\left(\frac{2\pi}{3}\right) \] At \(x = 0\): \[ = 0 \] Now, \(\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}\) and \(\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\): \[ = \frac{1}{2} \cdot \frac{\pi}{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{4} \left(-\frac{1}{2}\right) \] Calculating this gives: \[ = \frac{\pi \sqrt{3}}{12} - \frac{1}{8} \] 2. **Integral of \(x \sin(2x)\)**: Using integration by parts again, let \(u = x\) and \(dv = \sin(2x) \, dx\). Then \(du = dx\) and \(v = -\frac{1}{2} \cos(2x)\). Applying integration by parts: \[ \int x \sin(2x) \, dx = -\frac{1}{2} x \cos(2x) + \int \frac{1}{2} \cos(2x) \, dx \] The integral of \(\cos(2x)\) is \(\frac{1}{2} \sin(2x)\): \[ = -\frac{1}{2} x \cos(2x) + \frac{1}{4} \sin(2x) + C \] Evaluating from \(0\) to \(\frac{\pi}{3}\): \[ \left[ -\frac{1}{2} x \cos(2x) + \frac{1}{4} \sin(2x) \right]_0^{\frac{\pi}{3}} \] Calculating at the limits: At \(x = \frac{\pi}{3}\): \[ = -\frac{1}{2} \cdot \frac{\pi}{3} \cdot \cos\left(\frac{2\pi}{3}\right) + \frac{1}{4} \sin\left(\frac{2\pi}{3}\right) \] At \(x = 0\): \[ = 0 \] Now, \(\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\) and \(\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}\): \[ = -\frac{1}{2} \cdot \frac{\pi}{3} \cdot \left(-\frac{1}{2}\right) + \frac{1}{4} \cdot \frac{\sqrt{3}}{2} \] Calculating this gives: \[ = \frac{\pi}{12}

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the double integral \[ \iint_{\mathbf{R}} x \cos (2x+y) \, dA \] over the region defined by \( R: 0 \leq x \leq \frac{\pi}{3} \) and \( 0 \leq y \leq \frac{\pi}{2} \), we first express the double integral in iterated form: \[ \int_0^{\frac{\pi}{3}} \int_0^{\frac{\pi}{2}} x \cos(2x + y) \, dy \, dx. \] Next, we compute the inner integral with respect to \( y \): \[ \int_0^{\frac{\pi}{2}} \cos(2x + y) \, dy. \] The antiderivative of \( \cos(2x + y) \) with respect to \( y \) is \( \sin(2x + y) \). Thus, \[ \int \cos(2x + y) \, dy = \sin(2x + y) + C. \] Evaluating it from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_0^{\frac{\pi}{2}} \cos(2x + y) \, dy = \sin(2x + \frac{\pi}{2}) - \sin(2x + 0) = \sin(2x + \frac{\pi}{2}) - \sin(2x). \] Using the identity \( \sin(a + \frac{\pi}{2}) = \cos(a) \), we find \[ \sin(2x + \frac{\pi}{2}) = \cos(2x), \] therefore, \[ \int_0^{\frac{\pi}{2}} \cos(2x + y) \, dy = \cos(2x) - \sin(2x). \] Now we substitute this back into the outer integral: \[ \int_0^{\frac{\pi}{3}} x (\cos(2x) - \sin(2x)) \, dx. \] This can be split into two separate integrals: \[ \int_0^{\frac{\pi}{3}} x \cos(2x) \, dx - \int_0^{\frac{\pi}{3}} x \sin(2x) \, dx. \] Now we need to evaluate each integral separately. Using integration by parts for both: 1. For \( \int x \cos(2x) \, dx \), let \( u = x \) and \( dv = \cos(2x) dx \). Then \( du = dx \) and \( v = \frac{1}{2} \sin(2x) \). \[ \int x \cos(2x) \, dx = \frac{1}{2} x \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx = \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) + C. \] Evaluating from \( 0 \) to \( \frac{\pi}{3} \): \[ \left[ \frac{1}{2} \cdot \frac{\pi}{3} \sin\left(\frac{2\pi}{3}\right) + \frac{1}{4} \cos\left(\frac{2\pi}{3}\right) \right] - \left[ \frac{1}{2} \cdot 0 \cdot \sin(0) + \frac{1}{4} \cos(0) \right]. \] Calculating: \[ = \frac{1}{2} \cdot \frac{\pi}{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{4} \left(-\frac{1}{2}\right) - \frac{1}{4} = \frac{\pi \sqrt{3}}{12} - \frac{1}{8} - \frac{1}{4} = \frac{\pi \sqrt{3}}{12} - \frac{3}{8}. \] 2. For the integral \( \int x \sin(2x) \, dx \), using integration by parts, let \( u = x \) and \( dv = \sin(2x) dx \) giving \( du = dx \) and \( v = -\frac{1}{2} \cos(2x

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy