Calculate the double integral \( \iint_{\mathbf{R}} x \cos (2 x+y) d A \) where \( \mathbf{R} \) is the region: \( 0 \leq x \leq \frac{\pi}{3}, 0 \leq y \leq \frac{\pi}{2} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To evaluate the double integral \[ \iint_{\mathbf{R}} x \cos (2x+y) \, dA \] over the region defined by \( R: 0 \leq x \leq \frac{\pi}{3} \) and \( 0 \leq y \leq \frac{\pi}{2} \), we first express the double integral in iterated form: \[ \int_0^{\frac{\pi}{3}} \int_0^{\frac{\pi}{2}} x \cos(2x + y) \, dy \, dx. \] Next, we compute the inner integral with respect to \( y \): \[ \int_0^{\frac{\pi}{2}} \cos(2x + y) \, dy. \] The antiderivative of \( \cos(2x + y) \) with respect to \( y \) is \( \sin(2x + y) \). Thus, \[ \int \cos(2x + y) \, dy = \sin(2x + y) + C. \] Evaluating it from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_0^{\frac{\pi}{2}} \cos(2x + y) \, dy = \sin(2x + \frac{\pi}{2}) - \sin(2x + 0) = \sin(2x + \frac{\pi}{2}) - \sin(2x). \] Using the identity \( \sin(a + \frac{\pi}{2}) = \cos(a) \), we find \[ \sin(2x + \frac{\pi}{2}) = \cos(2x), \] therefore, \[ \int_0^{\frac{\pi}{2}} \cos(2x + y) \, dy = \cos(2x) - \sin(2x). \] Now we substitute this back into the outer integral: \[ \int_0^{\frac{\pi}{3}} x (\cos(2x) - \sin(2x)) \, dx. \] This can be split into two separate integrals: \[ \int_0^{\frac{\pi}{3}} x \cos(2x) \, dx - \int_0^{\frac{\pi}{3}} x \sin(2x) \, dx. \] Now we need to evaluate each integral separately. Using integration by parts for both: 1. For \( \int x \cos(2x) \, dx \), let \( u = x \) and \( dv = \cos(2x) dx \). Then \( du = dx \) and \( v = \frac{1}{2} \sin(2x) \). \[ \int x \cos(2x) \, dx = \frac{1}{2} x \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx = \frac{1}{2} x \sin(2x) + \frac{1}{4} \cos(2x) + C. \] Evaluating from \( 0 \) to \( \frac{\pi}{3} \): \[ \left[ \frac{1}{2} \cdot \frac{\pi}{3} \sin\left(\frac{2\pi}{3}\right) + \frac{1}{4} \cos\left(\frac{2\pi}{3}\right) \right] - \left[ \frac{1}{2} \cdot 0 \cdot \sin(0) + \frac{1}{4} \cos(0) \right]. \] Calculating: \[ = \frac{1}{2} \cdot \frac{\pi}{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{4} \left(-\frac{1}{2}\right) - \frac{1}{4} = \frac{\pi \sqrt{3}}{12} - \frac{1}{8} - \frac{1}{4} = \frac{\pi \sqrt{3}}{12} - \frac{3}{8}. \] 2. For the integral \( \int x \sin(2x) \, dx \), using integration by parts, let \( u = x \) and \( dv = \sin(2x) dx \) giving \( du = dx \) and \( v = -\frac{1}{2} \cos(2x