Answer
Here are the solutions for each equation:
1. **1.1.1 \( 3x^{2}-5x-1=0 \)**
- Solutions: \( x = \frac{5 - \sqrt{37}}{6} \) and \( x = \frac{5 + \sqrt{37}}{6} \)
2. **1.1.2 \( x^{2}-6x+8=0 \)**
- Solutions: \( x = 2 \) and \( x = 4 \)
3. **1.3 \( 4x-2x^{2}<0 \)**
- Solution Set: \( x < 0 \) or \( x > 2 \)
4. **1.4 \( 2^{1.0+1}+2^{3x}=12 \)**
- Solution: \( x = 1 \)
5. **1.5 \( \sqrt{x-1}+3=x-4 \)**
- Solution: \( x = 10 \)
If you need more help, feel free to ask!
Solution
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}-6x+8=0\)
- step1: Factor the expression:
\(\left(x-4\right)\left(x-2\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-4=0\\&x-2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=4\\&x=2\end{align}\)
- step4: Rewrite:
\(x_{1}=2,x_{2}=4\)
Solve the equation \( 3x^{2}-5x-1=0 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(3x^{2}-5x-1=0\)
- step1: Solve using the quadratic formula:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}\)
- step2: Simplify the expression:
\(x=\frac{5\pm \sqrt{\left(-5\right)^{2}-4\times 3\left(-1\right)}}{6}\)
- step3: Simplify the expression:
\(x=\frac{5\pm \sqrt{37}}{6}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{5+\sqrt{37}}{6}\\&x=\frac{5-\sqrt{37}}{6}\end{align}\)
- step5: Rewrite:
\(x_{1}=\frac{5-\sqrt{37}}{6},x_{2}=\frac{5+\sqrt{37}}{6}\)
Solve the equation \( \sqrt{x-1}+3=x-4 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\sqrt{x-1}+3=x-4\)
- step1: Find the domain:
\(\sqrt{x-1}+3=x-4,x\geq 1\)
- step2: Move the constant to the right side:
\(\sqrt{x-1}=x-4-3\)
- step3: Calculate:
\(\sqrt{x-1}=x-7\)
- step4: Evaluate:
\(\sqrt{x-1}=x-7,x-7\geq 0\)
- step5: Evaluate:
\(\sqrt{x-1}=x-7,x\geq 7\)
- step6: Solve the equation:
\(\begin{align}&x=10\\&x=5\end{align},x\geq 7\)
- step7: Find the intersection:
\(x=10\)
- step8: Check if the solution is in the defined range:
\(x=10,x\geq 1\)
- step9: Find the intersection:
\(x=10\)
- step10: Check the solution:
\(x=10\)
Solve the equation \( 2^{1.0+1}+2^{3x}=12 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2^{1+1}+2^{3x}=12\)
- step1: Simplify:
\(4+2^{3x}=12\)
- step2: Move the constant to the right side:
\(2^{3x}=12-4\)
- step3: Subtract the numbers:
\(2^{3x}=8\)
- step4: Rewrite in exponential form:
\(2^{3x}=2^{3}\)
- step5: Set the exponents equal:
\(3x=3\)
- step6: Divide both sides:
\(\frac{3x}{3}=\frac{3}{3}\)
- step7: Divide the numbers:
\(x=1\)
Solve the equation \( 4x-2x^{2}<0 \).
Solve the inequality by following steps:
- step0: Solve the inequality by testing the values in the interval:
\(4x-2x^{2}<0\)
- step1: Rewrite the expression:
\(4x-2x^{2}=0\)
- step2: Factor the expression:
\(2x\left(2-x\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&2x=0\\&2-x=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=0\\&x=2\end{align}\)
- step5: Determine the test intervals:
\(\begin{align}&x<0\\&02\end{align}\)
- step6: Choose a value:
\(\begin{align}&x_{1}=-1\\&x_{2}=1\\&x_{3}=3\end{align}\)
- step7: Test the chosen value:
\(\begin{align}&x<0\textrm{ }\textrm{is the solution}\\&02\textrm{ }\textrm{is the solution}\end{align}\)
- step8: The final solution is \(x \in \left(-\infty,0\right)\cup \left(2,+\infty\right):\)
\(x \in \left(-\infty,0\right)\cup \left(2,+\infty\right)\)
Here are the solutions for each of the equations:
### 1.1.1 \( 3x^{2}-5x-1=0 \)
The solutions are:
\[
x_{1} = \frac{5 - \sqrt{37}}{6}, \quad x_{2} = \frac{5 + \sqrt{37}}{6}
\]
### 1.1.2 \( x^{2}-6x+8=0 \)
The solutions are:
\[
x_{1} = 2, \quad x_{2} = 4
\]
### 1.3 \( 4x-2x^{2}<0 \)
The solution set is:
\[
x \in (-\infty, 0) \cup (2, +\infty)
\]
### 1.4 \( 2^{1.0+1}+2^{3x}=12 \)
The solution is:
\[
x = 1
\]
### 1.5 \( \sqrt{x-1}+3=x-4 \)
The solution is:
\[
x = 10
\]
If you have any further questions or need additional assistance, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution