Answer
The solutions for the systems of equations are:
1. \((x, y) = (-1, 0)\) and \((1, 4)\)
2. \((x, y) = (0, -3)\) and \((1, -4)\)
3. \((x, y) = \left(-\frac{5}{3}, -7\right)\) and \(\left(\frac{2}{3}, 0\right)\)
Solution
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y-2x=2\\x^{2}-2x=3-y\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=2+2x\\x^{2}-2x=3-y\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(x^{2}-2x=3-\left(2+2x\right)\)
- step3: Simplify:
\(x^{2}-2x=1-2x\)
- step4: Cancel equal terms:
\(x^{2}=1\)
- step5: Simplify the expression:
\(x=\pm \sqrt{1}\)
- step6: Simplify:
\(x=\pm 1\)
- step7: Separate into possible cases:
\(x=1\cup x=-1\)
- step8: Rearrange the terms:
\(\left\{ \begin{array}{l}x=1\\y=2+2x\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=2+2x\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=4\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=4\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=-1\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=4\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(-1,0\right)\cup \left(x,y\right) = \left(1,4\right)\)
Solve the system of equations \( y=-x-3; y=2 x^{2}-3 x-3 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}y=-x-3\\y=2x^{2}-3x-3\end{array}\right.\)
- step1: Substitute the value of \(y:\)
\(-x-3=2x^{2}-3x-3\)
- step2: Cancel equal terms:
\(-x=2x^{2}-3x\)
- step3: Move the expression to the left side:
\(-x-\left(2x^{2}-3x\right)=0\)
- step4: Subtract the terms:
\(2x-2x^{2}=0\)
- step5: Factor the expression:
\(2x\left(1-x\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&2x=0\\&1-x=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=0\\&x=1\end{align}\)
- step8: Calculate:
\(x=0\cup x=1\)
- step9: Rearrange the terms:
\(\left\{ \begin{array}{l}x=0\\y=-x-3\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-x-3\end{array}\right.\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=0\\y=-3\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-4\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=0\\y=-3\end{array}\right.\cup \left\{ \begin{array}{l}x=1\\y=-4\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(0,-3\right)\cup \left(x,y\right) = \left(1,-4\right)\)
Solve the system of equations \( 3 x-y=2; 3 y+9 x^{2}=4 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x-y=2\\3y+9x^{2}=4\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=-2+3x\\3y+9x^{2}=4\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(3\left(-2+3x\right)+9x^{2}=4\)
- step3: Expand the expression:
\(-6+9x+9x^{2}=4\)
- step4: Move the expression to the left side:
\(-6+9x+9x^{2}-4=0\)
- step5: Subtract the numbers:
\(-10+9x+9x^{2}=0\)
- step6: Factor the expression:
\(\left(-2+3x\right)\left(5+3x\right)=0\)
- step7: Separate into possible cases:
\(\begin{align}&-2+3x=0\\&5+3x=0\end{align}\)
- step8: Solve the equation:
\(\begin{align}&x=\frac{2}{3}\\&x=-\frac{5}{3}\end{align}\)
- step9: Calculate:
\(x=\frac{2}{3}\cup x=-\frac{5}{3}\)
- step10: Rearrange the terms:
\(\left\{ \begin{array}{l}x=\frac{2}{3}\\y=-2+3x\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-2+3x\end{array}\right.\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=\frac{2}{3}\\y=0\end{array}\right.\cup \left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-7\end{array}\right.\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-7\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{3}\\y=0\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{5}{3}\\y=-7\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{2}{3}\\y=0\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(-\frac{5}{3},-7\right)\cup \left(x,y\right) = \left(\frac{2}{3},0\right)\)
Here are the solutions for the given systems of equations:
1. For the system:
\[
\begin{align*}
y - 2x &= 2 \\
x^2 - 2x &= 3 - y
\end{align*}
\]
The solutions are:
\[
(x,y) = (-1,0) \cup (x,y) = (1,4)
\]
2. For the system:
\[
\begin{align*}
y &= -x - 3 \\
y &= 2x^2 - 3x - 3
\end{align*}
\]
The solutions are:
\[
(x,y) = (0,-3) \cup (x,y) = (1,-4)
\]
3. For the system:
\[
\begin{align*}
3x - y &= 2 \\
3y + 9x^2 &= 4
\end{align*}
\]
The solutions are:
\[
(x,y) = \left(-\frac{5}{3}, -7\right) \cup (x,y) = \left(\frac{2}{3}, 0\right)
\]
Alternatively, in decimal form:
\[
(x,y) = (-1.6, -7) \cup (x,y) = (0.6, 0)
\]
These results provide the pairs \((x,y)\) that satisfy each respective system of equations.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution