Question
upstudy study bank question image url

4) \( \log _{2}^{2} x-5 \log _{2} x+6=0 \)

Ask by Ingram Barker. in Kazakhstan
Feb 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Решение уравнения \( \log_{2}^{2} x - 5 \log_{2} x + 6 = 0 \) приводит к ответу: \( x = 4 \) или \( x = 8 \).

Solution

Решим уравнение:   (лог₂ x)² – 5·(лог₂ x) + 6 = 0. 1. Обозначим y = лог₂ x. Тогда уравнение примет вид:   y² – 5y + 6 = 0. 2. Найдём корни этого квадратного уравнения. Раскладываем на множители:   y² – 5y + 6 = (y – 2)(y – 3) = 0. 3. Получаем два уравнения:   y – 2 = 0  или  y – 3 = 0,   откуда y = 2 и y = 3. 4. Вернёмся к исходной переменной: y = лог₂ x. Тогда:   лог₂ x = 2  или  лог₂ x = 3. 5. Решаем каждое уравнение, используя определение логарифма:   x = 2² = 4  и  x = 2³ = 8. Ответ: x = 4 или x = 8.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Let's first simplify the equation by substituting \( y = \log_2 x \). This gives us: \[ y^2 - 5y + 6 = 0 \] Now we can factor the quadratic: \[ (y - 2)(y - 3) = 0 \] This gives us two solutions: \[ y - 2 = 0 \quad \Rightarrow \quad y = 2 \] \[ y - 3 = 0 \quad \Rightarrow \quad y = 3 \] Now, substituting back \( y = \log_2 x \): 1. For \( \log_2 x = 2 \): \[ x = 2^2 = 4 \] 2. For \( \log_2 x = 3 \): \[ x = 2^3 = 8 \] Thus, the solutions to the original equation are \( x = 4 \) and \( x = 8 \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy