Question
upstudy study bank question image url

\( \begin{array}{ll}5.2 & \text { Simplify the following without using a calculator: } \\ & \frac{\sin \left(90^{\circ}-\theta\right) \cdot \cos 480^{\circ}+\cos \left(180^{\circ}-\theta\right)}{\cos \theta \cdot \sin 150^{\circ}-\tan 180^{\circ}} \\ 5.3 & \text { Prove that } \frac{\cos x}{\sin 2 x}-\frac{\cos 2 x}{2 \sin x}=\sin x\end{array} \)

Ask by Flynn Mann. in South Africa
Feb 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

5.2 Simplify the expression: \[ \frac{\sin \left(90^{\circ}-\theta\right) \cdot \cos 480^{\circ}+\cos \left(180^{\circ}-\theta\right)}{\cos \theta \cdot \sin 150^{\circ}-\tan 180^{\circ}} \] 5.3 Prove that: \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x \]

Solution

5.2 Simplify the expression without using a calculator: \[ \frac{\sin \left(90^{\circ}-\theta\right) \cdot \cos 480^{\circ}+\cos \left(180^{\circ}-\theta\right)}{\cos \theta \cdot \sin 150^{\circ}-\tan 180^{\circ}} \] 5.3 Prove that: \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression given, first, let's break down the components. The sine and cosine identities tell us that \( \sin(90^\circ - \theta) = \cos \theta \), and \( \cos(480^\circ) = \cos(480^\circ - 360^\circ) = \cos(120^\circ) = -\frac{1}{2} \). Thus, we can rewrite the expression as: \[ \frac{\cos \theta \cdot (-\frac{1}{2}) + \cos(180^\circ - \theta)}{\cos \theta \cdot \frac{1}{2} - 0} \] Knowing that \( \cos(180^\circ - \theta) = -\cos \theta \), the numerator simplifies to: \[ -\frac{1}{2} \cos \theta - \cos \theta = -\frac{3}{2} \cos \theta \] The denominator simplifies to \( \frac{1}{2} \cos \theta \). Hence, the whole expression simplifies to: \[ \frac{-\frac{3}{2} \cos \theta}{\frac{1}{2} \cos \theta} = -3 \] Now onto the proof for the second part. We start with the left side \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2 \sin x} \] Using the double angle identity, \( \sin 2x = 2 \sin x \cos x \), we rewrite the first term: \[ \frac{\cos x}{2 \sin x \cos x} = \frac{1}{2 \sin x} \] The second term can be rewritten as: \[ \frac{\cos 2x}{2 \sin x} \] Now, let's focus on combining them: \[ \frac{1 - \cos 2x}{2 \sin x} \] Using the identity \( 1 - \cos 2x = 2 \sin^2 x \), we substitute: \[ \frac{2 \sin^2 x}{2 \sin x} = \sin x \] Thus, proving that \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2 \sin x} = \sin x \] And that completes the proof!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy