Pregunta
upstudy study bank question image url

\( \begin{array}{ll}5.2 & \text { Simplify the following without using a calculator: } \\ & \frac{\sin \left(90^{\circ}-\theta\right) \cdot \cos 480^{\circ}+\cos \left(180^{\circ}-\theta\right)}{\cos \theta \cdot \sin 150^{\circ}-\tan 180^{\circ}} \\ 5.3 & \text { Prove that } \frac{\cos x}{\sin 2 x}-\frac{\cos 2 x}{2 \sin x}=\sin x\end{array} \)

Ask by Flynn Mann. in South Africa
Feb 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

5.2 Simplify the expression: \[ \frac{\sin \left(90^{\circ}-\theta\right) \cdot \cos 480^{\circ}+\cos \left(180^{\circ}-\theta\right)}{\cos \theta \cdot \sin 150^{\circ}-\tan 180^{\circ}} \] 5.3 Prove that: \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x \]

Solución

5.2 Simplify the expression without using a calculator: \[ \frac{\sin \left(90^{\circ}-\theta\right) \cdot \cos 480^{\circ}+\cos \left(180^{\circ}-\theta\right)}{\cos \theta \cdot \sin 150^{\circ}-\tan 180^{\circ}} \] 5.3 Prove that: \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the expression given, first, let's break down the components. The sine and cosine identities tell us that \( \sin(90^\circ - \theta) = \cos \theta \), and \( \cos(480^\circ) = \cos(480^\circ - 360^\circ) = \cos(120^\circ) = -\frac{1}{2} \). Thus, we can rewrite the expression as: \[ \frac{\cos \theta \cdot (-\frac{1}{2}) + \cos(180^\circ - \theta)}{\cos \theta \cdot \frac{1}{2} - 0} \] Knowing that \( \cos(180^\circ - \theta) = -\cos \theta \), the numerator simplifies to: \[ -\frac{1}{2} \cos \theta - \cos \theta = -\frac{3}{2} \cos \theta \] The denominator simplifies to \( \frac{1}{2} \cos \theta \). Hence, the whole expression simplifies to: \[ \frac{-\frac{3}{2} \cos \theta}{\frac{1}{2} \cos \theta} = -3 \] Now onto the proof for the second part. We start with the left side \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2 \sin x} \] Using the double angle identity, \( \sin 2x = 2 \sin x \cos x \), we rewrite the first term: \[ \frac{\cos x}{2 \sin x \cos x} = \frac{1}{2 \sin x} \] The second term can be rewritten as: \[ \frac{\cos 2x}{2 \sin x} \] Now, let's focus on combining them: \[ \frac{1 - \cos 2x}{2 \sin x} \] Using the identity \( 1 - \cos 2x = 2 \sin^2 x \), we substitute: \[ \frac{2 \sin^2 x}{2 \sin x} = \sin x \] Thus, proving that \[ \frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2 \sin x} = \sin x \] And that completes the proof!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad