Question
upstudy study bank question image url

4. \( \begin{array}{ll}\text { (q) }\left(3 x^{4}\right)^{2} \cdot\left(2 x^{2}\right)^{4} & \text { (r) } 3\left(2 a^{3}\right)^{2} \times 2\left(3 a^{2}\right)^{3} \\ \text { (a) }\left(\frac{3 a^{4}}{5 b^{6}}\right)^{2} & \text { (b) }\left(\frac{16 x^{5} y}{8 x y^{4}}\right)^{3} \\ \text { (d) }\left(\frac{6 x^{7}}{12 x^{9}}\right)^{-2} & \text { (c) }\left(\frac{2 a^{3} \cdot 3 a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2} \\ \text { (g) } \frac{\left(x^{-2} y^{4}\right)^{2}}{x^{2} y^{-3}} & \text { (h) } \frac{2\left(a^{-2} b^{2}\right)^{-3} \times(a b)}{\left(2 b^{-6}\right)^{2}}\end{array} \)

Ask by Guzman Rose. in South Africa
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: - (q) \( 144x^{16} \) - (r) \( 648a^{12} \) - (a) \( \frac{9a^{8}}{25b^{12}} \) - (b) \( \frac{8x^{12}}{y^{9}} \) - (d) \( \frac{1-4x^{2}}{2x^{2}} \) - (c) \( \frac{1}{a^{2}} \) - (g) \( \frac{y^{11}}{x^{6}} \) - (h) \( \frac{a^{7}b^{7}}{2} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{2a^{3}\times 3a^{2}}{\left(6\left(a^{3}\right)^{2}\right)}\right)^{2}\) - step1: Remove the parentheses: \(\left(\frac{2a^{3}\times 3a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2}\) - step2: Multiply the exponents: \(\left(\frac{2a^{3}\times 3a^{2}}{6a^{3\times 2}}\right)^{2}\) - step3: Multiply by \(a^{-n}:\) \(\left(\frac{2a^{3}\times 3a^{2}\times a^{-3\times 2}}{6}\right)^{2}\) - step4: Multiply the numbers: \(\left(\frac{2a^{3}\times 3a^{2}\times a^{-6}}{6}\right)^{2}\) - step5: Reduce the fraction: \(\left(\frac{1}{a}\right)^{2}\) - step6: Evaluate the power: \(a^{-2}\) - step7: Simplify: \(\frac{1}{a^{2}}\) Calculate or simplify the expression \( (2*(a^(-2)*b^2)^(-3)*(a*b))/(2*b^(-6))^2 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)\right)}{\left(2b^{-6}\right)^{2}}\) - step1: Evaluate: \(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}ab\right)}{\left(2b^{-6}\right)^{2}}\) - step2: Remove the parentheses: \(\frac{2\left(a^{-2}b^{2}\right)^{-3}ab}{\left(2b^{-6}\right)^{2}}\) - step3: Factor the expression: \(\frac{2\left(a^{-2}b^{2}\right)^{-3}ab}{2^{2}b^{-12}}\) - step4: Reduce the fraction: \(\frac{\left(a^{-2}b^{2}\right)^{-3}ab^{13}}{2}\) - step5: Evaluate the power: \(\frac{a^{6}b^{-6}ab^{13}}{2}\) - step6: Simplify: \(\frac{a^{7}b^{7}}{2}\) Calculate or simplify the expression \( (16*x^5*y/(8*x*y^4))^3 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{16x^{5}y}{8xy^{4}}\right)^{3}\) - step1: Divide the terms: \(\left(\frac{2x^{4}}{y^{3}}\right)^{3}\) - step2: Rewrite the expression: \(\frac{\left(2x^{4}\right)^{3}}{\left(y^{3}\right)^{3}}\) - step3: Evaluate the power: \(\frac{8x^{12}}{y^{9}}\) Calculate or simplify the expression \( 3*(2*a^3)^2*2*(3*a^2)^3 \). Simplify the expression by following steps: - step0: Solution: \(3\left(2a^{3}\right)^{2}\times 2\left(3a^{2}\right)^{3}\) - step1: Multiply the terms: \(6\left(2a^{3}\right)^{2}\left(3a^{2}\right)^{3}\) - step2: Multiply the terms: \(24a^{6}\left(3a^{2}\right)^{3}\) - step3: Rewrite the expression: \(24a^{6}\times 27a^{6}\) - step4: Multiply the numbers: \(648a^{6}\times a^{6}\) - step5: Multiply the terms: \(648a^{12}\) Calculate or simplify the expression \( (3*x^4)^2*(2*x^2)^4 \). Simplify the expression by following steps: - step0: Solution: \(\left(3x^{4}\right)^{2}\left(2x^{2}\right)^{4}\) - step1: Rewrite the expression: \(9x^{8}\times 16x^{8}\) - step2: Multiply the numbers: \(144x^{8}\times x^{8}\) - step3: Multiply the terms: \(144x^{16}\) Calculate or simplify the expression \( (6*x^7/(12*x^9))^-2 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{6x^{7}}{12x^{9}}\right)-2\) - step1: Divide the terms: \(\frac{1}{2x^{2}}-2\) - step2: Reduce fractions to a common denominator: \(\frac{1}{2x^{2}}-\frac{2\times 2x^{2}}{2x^{2}}\) - step3: Transform the expression: \(\frac{1-2\times 2x^{2}}{2x^{2}}\) - step4: Multiply the terms: \(\frac{1-4x^{2}}{2x^{2}}\) Calculate or simplify the expression \( ((x^(-2)*y^4)^2)/(x^2*y^(-3)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\left(x^{-2}y^{4}\right)^{2}\right)}{\left(x^{2}y^{-3}\right)}\) - step1: Evaluate: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{\left(x^{2}y^{-3}\right)}\) - step2: Remove the parentheses: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{x^{2}y^{-3}}\) - step3: Rewrite the expression: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{\frac{x^{2}}{y^{3}}}\) - step4: Multiply by the reciprocal: \(\left(x^{-2}y^{4}\right)^{2}\times \frac{y^{3}}{x^{2}}\) - step5: Multiply the terms: \(\frac{\left(x^{-2}y^{4}\right)^{2}y^{3}}{x^{2}}\) - step6: Multiply the terms: \(\frac{x^{-4}y^{11}}{x^{2}}\) - step7: Reduce the fraction: \(\frac{y^{11}}{x^{6}}\) Calculate or simplify the expression \( (3*a^4/(5*b^6))^2 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{3a^{4}}{5b^{6}}\right)^{2}\) - step1: Rewrite the expression: \(\frac{\left(3a^{4}\right)^{2}}{\left(5b^{6}\right)^{2}}\) - step2: Evaluate the power: \(\frac{9a^{8}}{25b^{12}}\) Let's simplify each expression step by step: ### (q) \( (3x^{4})^{2} \cdot (2x^{2})^{4} \) 1. Calculate \( (3x^{4})^{2} = 9x^{8} \). 2. Calculate \( (2x^{2})^{4} = 16x^{8} \). 3. Multiply the results: \( 9x^{8} \cdot 16x^{8} = 144x^{16} \). **Result:** \( 144x^{16} \) --- ### (r) \( 3(2a^{3})^{2} \times 2(3a^{2})^{3} \) 1. Calculate \( (2a^{3})^{2} = 4a^{6} \). 2. Calculate \( (3a^{2})^{3} = 27a^{6} \). 3. Multiply: \( 3 \cdot 4a^{6} \cdot 2 \cdot 27a^{6} = 648a^{12} \). **Result:** \( 648a^{12} \) --- ### (a) \( \left(\frac{3a^{4}}{5b^{6}}\right)^{2} \) 1. Square the numerator: \( (3a^{4})^{2} = 9a^{8} \). 2. Square the denominator: \( (5b^{6})^{2} = 25b^{12} \). 3. Combine: \( \frac{9a^{8}}{25b^{12}} \). **Result:** \( \frac{9a^{8}}{25b^{12}} \) --- ### (b) \( \left(\frac{16x^{5}y}{8xy^{4}}\right)^{3} \) 1. Simplify the fraction: \( \frac{16x^{5}y}{8xy^{4}} = 2x^{4}y^{-3} \). 2. Cube the result: \( (2x^{4}y^{-3})^{3} = 8x^{12}y^{-9} = \frac{8x^{12}}{y^{9}} \). **Result:** \( \frac{8x^{12}}{y^{9}} \) --- ### (d) \( \left(\frac{6x^{7}}{12x^{9}}\right)^{-2} \) 1. Simplify the fraction: \( \frac{6x^{7}}{12x^{9}} = \frac{1}{2x^{2}} \). 2. Apply the negative exponent: \( \left(\frac{1}{2x^{2}}\right)^{-2} = \frac{1}{(1/2)^{2}(x^{2})^{2}} = \frac{1-4x^{2}}{2x^{2}} \). **Result:** \( \frac{1-4x^{2}}{2x^{2}} \) --- ### (c) \( \left(\frac{2a^{3} \cdot 3a^{2}}{6(a^{3})^{2}}\right)^{2} \) 1. Simplify the fraction: \( \frac{6a^{5}}{6a^{6}} = \frac{1}{a} \). 2. Square the result: \( \left(\frac{1}{a}\right)^{2} = \frac{1}{a^{2}} \). **Result:** \( \frac{1}{a^{2}} \) --- ### (g) \( \frac{(x^{-2}y^{4})^{2}}{x^{2}y^{-3}} \) 1. Square the numerator: \( (x^{-2}y^{4})^{2} = x^{-4}y^{8} \). 2. Combine: \( \frac{x^{-4}y^{8}}{x^{2}y^{-3}} = x^{-4-2}y^{8-(-3)} = x^{-6}y^{11} \). 3. Rewrite: \( \frac{y^{11}}{x^{6}} \). **Result:** \( \frac{y^{11}}{x^{6}} \) --- ### (h) \( \frac{2(a^{-2}b^{2})^{-3} \times (ab)}{(2b^{-6})^{2}} \) 1. Simplify the numerator: \( (a^{-2}b^{2})^{-3} = a^{6}b^{-6} \). 2. Combine: \( 2a^{6}b^{-6} \cdot ab = 2a^{7}b^{-5} \). 3. Simplify the denominator: \( (2b^{-6})^{2} = 4b^{-12} \). 4. Combine: \( \frac{2a^{7}b^{-5}}{4b^{-12}} = \frac{a^{7}b^{7}}{2} \). **Result:** \( \frac{a^{7}b^{7}}{2} \) --- ### Summary of Results: - (q) \( 144x^{16} \) - (r) \( 648a^{12} \) - (a) \( \frac{9a^{8}}{25b^{12}} \) - (b) \( \frac{8x^{12}}{y^{9}} \) - (d) \( \frac{1-4x^{2}}{2x^{2}} \) - (c) \( \frac{1}{a^{2}} \) - (g) \( \frac{y^{11}}{x^{6}} \) - (h) \( \frac{a^{7}b^{7}}{2} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

When it comes to simplifying exponents and factoring in mathematical expressions, the laws of exponents come into play beautifully! For instance, remember that when you raise a power to a power, you multiply the exponents (like \((x^m)^n = x^{m \cdot n}\)), and when you multiply like bases, you add the exponents (like \(x^m \cdot x^n = x^{m+n}\)). These foundational rules lighten the load during simplification! Have you ever stumbled while simplifying expressions? A common mistake is forgetting to apply the distributive property, which is crucial when working with coefficients and variables. For example, if dealing with \((3x^4)^2\), don't overlook squaring both the coefficient and the variable (resulting in \(9x^8\)). Watch out for those pesky negatives in the exponent too, as they can flip fractions!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy