Answer
Here are the simplified results for each expression:
- (q) \( 144x^{16} \)
- (r) \( 648a^{12} \)
- (a) \( \frac{9a^{8}}{25b^{12}} \)
- (b) \( \frac{8x^{12}}{y^{9}} \)
- (d) \( \frac{1-4x^{2}}{2x^{2}} \)
- (c) \( \frac{1}{a^{2}} \)
- (g) \( \frac{y^{11}}{x^{6}} \)
- (h) \( \frac{a^{7}b^{7}}{2} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{2a^{3}\times 3a^{2}}{\left(6\left(a^{3}\right)^{2}\right)}\right)^{2}\)
- step1: Remove the parentheses:
\(\left(\frac{2a^{3}\times 3a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2}\)
- step2: Multiply the exponents:
\(\left(\frac{2a^{3}\times 3a^{2}}{6a^{3\times 2}}\right)^{2}\)
- step3: Multiply by \(a^{-n}:\)
\(\left(\frac{2a^{3}\times 3a^{2}\times a^{-3\times 2}}{6}\right)^{2}\)
- step4: Multiply the numbers:
\(\left(\frac{2a^{3}\times 3a^{2}\times a^{-6}}{6}\right)^{2}\)
- step5: Reduce the fraction:
\(\left(\frac{1}{a}\right)^{2}\)
- step6: Evaluate the power:
\(a^{-2}\)
- step7: Simplify:
\(\frac{1}{a^{2}}\)
Calculate or simplify the expression \( (2*(a^(-2)*b^2)^(-3)*(a*b))/(2*b^(-6))^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)\right)}{\left(2b^{-6}\right)^{2}}\)
- step1: Evaluate:
\(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}ab\right)}{\left(2b^{-6}\right)^{2}}\)
- step2: Remove the parentheses:
\(\frac{2\left(a^{-2}b^{2}\right)^{-3}ab}{\left(2b^{-6}\right)^{2}}\)
- step3: Factor the expression:
\(\frac{2\left(a^{-2}b^{2}\right)^{-3}ab}{2^{2}b^{-12}}\)
- step4: Reduce the fraction:
\(\frac{\left(a^{-2}b^{2}\right)^{-3}ab^{13}}{2}\)
- step5: Evaluate the power:
\(\frac{a^{6}b^{-6}ab^{13}}{2}\)
- step6: Simplify:
\(\frac{a^{7}b^{7}}{2}\)
Calculate or simplify the expression \( (16*x^5*y/(8*x*y^4))^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{16x^{5}y}{8xy^{4}}\right)^{3}\)
- step1: Divide the terms:
\(\left(\frac{2x^{4}}{y^{3}}\right)^{3}\)
- step2: Rewrite the expression:
\(\frac{\left(2x^{4}\right)^{3}}{\left(y^{3}\right)^{3}}\)
- step3: Evaluate the power:
\(\frac{8x^{12}}{y^{9}}\)
Calculate or simplify the expression \( 3*(2*a^3)^2*2*(3*a^2)^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(3\left(2a^{3}\right)^{2}\times 2\left(3a^{2}\right)^{3}\)
- step1: Multiply the terms:
\(6\left(2a^{3}\right)^{2}\left(3a^{2}\right)^{3}\)
- step2: Multiply the terms:
\(24a^{6}\left(3a^{2}\right)^{3}\)
- step3: Rewrite the expression:
\(24a^{6}\times 27a^{6}\)
- step4: Multiply the numbers:
\(648a^{6}\times a^{6}\)
- step5: Multiply the terms:
\(648a^{12}\)
Calculate or simplify the expression \( (3*x^4)^2*(2*x^2)^4 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3x^{4}\right)^{2}\left(2x^{2}\right)^{4}\)
- step1: Rewrite the expression:
\(9x^{8}\times 16x^{8}\)
- step2: Multiply the numbers:
\(144x^{8}\times x^{8}\)
- step3: Multiply the terms:
\(144x^{16}\)
Calculate or simplify the expression \( (6*x^7/(12*x^9))^-2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{6x^{7}}{12x^{9}}\right)-2\)
- step1: Divide the terms:
\(\frac{1}{2x^{2}}-2\)
- step2: Reduce fractions to a common denominator:
\(\frac{1}{2x^{2}}-\frac{2\times 2x^{2}}{2x^{2}}\)
- step3: Transform the expression:
\(\frac{1-2\times 2x^{2}}{2x^{2}}\)
- step4: Multiply the terms:
\(\frac{1-4x^{2}}{2x^{2}}\)
Calculate or simplify the expression \( ((x^(-2)*y^4)^2)/(x^2*y^(-3)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\left(x^{-2}y^{4}\right)^{2}\right)}{\left(x^{2}y^{-3}\right)}\)
- step1: Evaluate:
\(\frac{\left(x^{-2}y^{4}\right)^{2}}{\left(x^{2}y^{-3}\right)}\)
- step2: Remove the parentheses:
\(\frac{\left(x^{-2}y^{4}\right)^{2}}{x^{2}y^{-3}}\)
- step3: Rewrite the expression:
\(\frac{\left(x^{-2}y^{4}\right)^{2}}{\frac{x^{2}}{y^{3}}}\)
- step4: Multiply by the reciprocal:
\(\left(x^{-2}y^{4}\right)^{2}\times \frac{y^{3}}{x^{2}}\)
- step5: Multiply the terms:
\(\frac{\left(x^{-2}y^{4}\right)^{2}y^{3}}{x^{2}}\)
- step6: Multiply the terms:
\(\frac{x^{-4}y^{11}}{x^{2}}\)
- step7: Reduce the fraction:
\(\frac{y^{11}}{x^{6}}\)
Calculate or simplify the expression \( (3*a^4/(5*b^6))^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{3a^{4}}{5b^{6}}\right)^{2}\)
- step1: Rewrite the expression:
\(\frac{\left(3a^{4}\right)^{2}}{\left(5b^{6}\right)^{2}}\)
- step2: Evaluate the power:
\(\frac{9a^{8}}{25b^{12}}\)
Let's simplify each expression step by step:
### (q) \( (3x^{4})^{2} \cdot (2x^{2})^{4} \)
1. Calculate \( (3x^{4})^{2} = 9x^{8} \).
2. Calculate \( (2x^{2})^{4} = 16x^{8} \).
3. Multiply the results: \( 9x^{8} \cdot 16x^{8} = 144x^{16} \).
**Result:** \( 144x^{16} \)
---
### (r) \( 3(2a^{3})^{2} \times 2(3a^{2})^{3} \)
1. Calculate \( (2a^{3})^{2} = 4a^{6} \).
2. Calculate \( (3a^{2})^{3} = 27a^{6} \).
3. Multiply: \( 3 \cdot 4a^{6} \cdot 2 \cdot 27a^{6} = 648a^{12} \).
**Result:** \( 648a^{12} \)
---
### (a) \( \left(\frac{3a^{4}}{5b^{6}}\right)^{2} \)
1. Square the numerator: \( (3a^{4})^{2} = 9a^{8} \).
2. Square the denominator: \( (5b^{6})^{2} = 25b^{12} \).
3. Combine: \( \frac{9a^{8}}{25b^{12}} \).
**Result:** \( \frac{9a^{8}}{25b^{12}} \)
---
### (b) \( \left(\frac{16x^{5}y}{8xy^{4}}\right)^{3} \)
1. Simplify the fraction: \( \frac{16x^{5}y}{8xy^{4}} = 2x^{4}y^{-3} \).
2. Cube the result: \( (2x^{4}y^{-3})^{3} = 8x^{12}y^{-9} = \frac{8x^{12}}{y^{9}} \).
**Result:** \( \frac{8x^{12}}{y^{9}} \)
---
### (d) \( \left(\frac{6x^{7}}{12x^{9}}\right)^{-2} \)
1. Simplify the fraction: \( \frac{6x^{7}}{12x^{9}} = \frac{1}{2x^{2}} \).
2. Apply the negative exponent: \( \left(\frac{1}{2x^{2}}\right)^{-2} = \frac{1}{(1/2)^{2}(x^{2})^{2}} = \frac{1-4x^{2}}{2x^{2}} \).
**Result:** \( \frac{1-4x^{2}}{2x^{2}} \)
---
### (c) \( \left(\frac{2a^{3} \cdot 3a^{2}}{6(a^{3})^{2}}\right)^{2} \)
1. Simplify the fraction: \( \frac{6a^{5}}{6a^{6}} = \frac{1}{a} \).
2. Square the result: \( \left(\frac{1}{a}\right)^{2} = \frac{1}{a^{2}} \).
**Result:** \( \frac{1}{a^{2}} \)
---
### (g) \( \frac{(x^{-2}y^{4})^{2}}{x^{2}y^{-3}} \)
1. Square the numerator: \( (x^{-2}y^{4})^{2} = x^{-4}y^{8} \).
2. Combine: \( \frac{x^{-4}y^{8}}{x^{2}y^{-3}} = x^{-4-2}y^{8-(-3)} = x^{-6}y^{11} \).
3. Rewrite: \( \frac{y^{11}}{x^{6}} \).
**Result:** \( \frac{y^{11}}{x^{6}} \)
---
### (h) \( \frac{2(a^{-2}b^{2})^{-3} \times (ab)}{(2b^{-6})^{2}} \)
1. Simplify the numerator: \( (a^{-2}b^{2})^{-3} = a^{6}b^{-6} \).
2. Combine: \( 2a^{6}b^{-6} \cdot ab = 2a^{7}b^{-5} \).
3. Simplify the denominator: \( (2b^{-6})^{2} = 4b^{-12} \).
4. Combine: \( \frac{2a^{7}b^{-5}}{4b^{-12}} = \frac{a^{7}b^{7}}{2} \).
**Result:** \( \frac{a^{7}b^{7}}{2} \)
---
### Summary of Results:
- (q) \( 144x^{16} \)
- (r) \( 648a^{12} \)
- (a) \( \frac{9a^{8}}{25b^{12}} \)
- (b) \( \frac{8x^{12}}{y^{9}} \)
- (d) \( \frac{1-4x^{2}}{2x^{2}} \)
- (c) \( \frac{1}{a^{2}} \)
- (g) \( \frac{y^{11}}{x^{6}} \)
- (h) \( \frac{a^{7}b^{7}}{2} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution