Pregunta
upstudy study bank question image url

4. \( \begin{array}{ll}\text { (q) }\left(3 x^{4}\right)^{2} \cdot\left(2 x^{2}\right)^{4} & \text { (r) } 3\left(2 a^{3}\right)^{2} \times 2\left(3 a^{2}\right)^{3} \\ \text { (a) }\left(\frac{3 a^{4}}{5 b^{6}}\right)^{2} & \text { (b) }\left(\frac{16 x^{5} y}{8 x y^{4}}\right)^{3} \\ \text { (d) }\left(\frac{6 x^{7}}{12 x^{9}}\right)^{-2} & \text { (c) }\left(\frac{2 a^{3} \cdot 3 a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2} \\ \text { (g) } \frac{\left(x^{-2} y^{4}\right)^{2}}{x^{2} y^{-3}} & \text { (h) } \frac{2\left(a^{-2} b^{2}\right)^{-3} \times(a b)}{\left(2 b^{-6}\right)^{2}}\end{array} \)

Ask by Guzman Rose. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each expression: - (q) \( 144x^{16} \) - (r) \( 648a^{12} \) - (a) \( \frac{9a^{8}}{25b^{12}} \) - (b) \( \frac{8x^{12}}{y^{9}} \) - (d) \( \frac{1-4x^{2}}{2x^{2}} \) - (c) \( \frac{1}{a^{2}} \) - (g) \( \frac{y^{11}}{x^{6}} \) - (h) \( \frac{a^{7}b^{7}}{2} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{2a^{3}\times 3a^{2}}{\left(6\left(a^{3}\right)^{2}\right)}\right)^{2}\) - step1: Remove the parentheses: \(\left(\frac{2a^{3}\times 3a^{2}}{6\left(a^{3}\right)^{2}}\right)^{2}\) - step2: Multiply the exponents: \(\left(\frac{2a^{3}\times 3a^{2}}{6a^{3\times 2}}\right)^{2}\) - step3: Multiply by \(a^{-n}:\) \(\left(\frac{2a^{3}\times 3a^{2}\times a^{-3\times 2}}{6}\right)^{2}\) - step4: Multiply the numbers: \(\left(\frac{2a^{3}\times 3a^{2}\times a^{-6}}{6}\right)^{2}\) - step5: Reduce the fraction: \(\left(\frac{1}{a}\right)^{2}\) - step6: Evaluate the power: \(a^{-2}\) - step7: Simplify: \(\frac{1}{a^{2}}\) Calculate or simplify the expression \( (2*(a^(-2)*b^2)^(-3)*(a*b))/(2*b^(-6))^2 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}\left(ab\right)\right)}{\left(2b^{-6}\right)^{2}}\) - step1: Evaluate: \(\frac{\left(2\left(a^{-2}b^{2}\right)^{-3}ab\right)}{\left(2b^{-6}\right)^{2}}\) - step2: Remove the parentheses: \(\frac{2\left(a^{-2}b^{2}\right)^{-3}ab}{\left(2b^{-6}\right)^{2}}\) - step3: Factor the expression: \(\frac{2\left(a^{-2}b^{2}\right)^{-3}ab}{2^{2}b^{-12}}\) - step4: Reduce the fraction: \(\frac{\left(a^{-2}b^{2}\right)^{-3}ab^{13}}{2}\) - step5: Evaluate the power: \(\frac{a^{6}b^{-6}ab^{13}}{2}\) - step6: Simplify: \(\frac{a^{7}b^{7}}{2}\) Calculate or simplify the expression \( (16*x^5*y/(8*x*y^4))^3 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{16x^{5}y}{8xy^{4}}\right)^{3}\) - step1: Divide the terms: \(\left(\frac{2x^{4}}{y^{3}}\right)^{3}\) - step2: Rewrite the expression: \(\frac{\left(2x^{4}\right)^{3}}{\left(y^{3}\right)^{3}}\) - step3: Evaluate the power: \(\frac{8x^{12}}{y^{9}}\) Calculate or simplify the expression \( 3*(2*a^3)^2*2*(3*a^2)^3 \). Simplify the expression by following steps: - step0: Solution: \(3\left(2a^{3}\right)^{2}\times 2\left(3a^{2}\right)^{3}\) - step1: Multiply the terms: \(6\left(2a^{3}\right)^{2}\left(3a^{2}\right)^{3}\) - step2: Multiply the terms: \(24a^{6}\left(3a^{2}\right)^{3}\) - step3: Rewrite the expression: \(24a^{6}\times 27a^{6}\) - step4: Multiply the numbers: \(648a^{6}\times a^{6}\) - step5: Multiply the terms: \(648a^{12}\) Calculate or simplify the expression \( (3*x^4)^2*(2*x^2)^4 \). Simplify the expression by following steps: - step0: Solution: \(\left(3x^{4}\right)^{2}\left(2x^{2}\right)^{4}\) - step1: Rewrite the expression: \(9x^{8}\times 16x^{8}\) - step2: Multiply the numbers: \(144x^{8}\times x^{8}\) - step3: Multiply the terms: \(144x^{16}\) Calculate or simplify the expression \( (6*x^7/(12*x^9))^-2 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{6x^{7}}{12x^{9}}\right)-2\) - step1: Divide the terms: \(\frac{1}{2x^{2}}-2\) - step2: Reduce fractions to a common denominator: \(\frac{1}{2x^{2}}-\frac{2\times 2x^{2}}{2x^{2}}\) - step3: Transform the expression: \(\frac{1-2\times 2x^{2}}{2x^{2}}\) - step4: Multiply the terms: \(\frac{1-4x^{2}}{2x^{2}}\) Calculate or simplify the expression \( ((x^(-2)*y^4)^2)/(x^2*y^(-3)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\left(x^{-2}y^{4}\right)^{2}\right)}{\left(x^{2}y^{-3}\right)}\) - step1: Evaluate: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{\left(x^{2}y^{-3}\right)}\) - step2: Remove the parentheses: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{x^{2}y^{-3}}\) - step3: Rewrite the expression: \(\frac{\left(x^{-2}y^{4}\right)^{2}}{\frac{x^{2}}{y^{3}}}\) - step4: Multiply by the reciprocal: \(\left(x^{-2}y^{4}\right)^{2}\times \frac{y^{3}}{x^{2}}\) - step5: Multiply the terms: \(\frac{\left(x^{-2}y^{4}\right)^{2}y^{3}}{x^{2}}\) - step6: Multiply the terms: \(\frac{x^{-4}y^{11}}{x^{2}}\) - step7: Reduce the fraction: \(\frac{y^{11}}{x^{6}}\) Calculate or simplify the expression \( (3*a^4/(5*b^6))^2 \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{3a^{4}}{5b^{6}}\right)^{2}\) - step1: Rewrite the expression: \(\frac{\left(3a^{4}\right)^{2}}{\left(5b^{6}\right)^{2}}\) - step2: Evaluate the power: \(\frac{9a^{8}}{25b^{12}}\) Let's simplify each expression step by step: ### (q) \( (3x^{4})^{2} \cdot (2x^{2})^{4} \) 1. Calculate \( (3x^{4})^{2} = 9x^{8} \). 2. Calculate \( (2x^{2})^{4} = 16x^{8} \). 3. Multiply the results: \( 9x^{8} \cdot 16x^{8} = 144x^{16} \). **Result:** \( 144x^{16} \) --- ### (r) \( 3(2a^{3})^{2} \times 2(3a^{2})^{3} \) 1. Calculate \( (2a^{3})^{2} = 4a^{6} \). 2. Calculate \( (3a^{2})^{3} = 27a^{6} \). 3. Multiply: \( 3 \cdot 4a^{6} \cdot 2 \cdot 27a^{6} = 648a^{12} \). **Result:** \( 648a^{12} \) --- ### (a) \( \left(\frac{3a^{4}}{5b^{6}}\right)^{2} \) 1. Square the numerator: \( (3a^{4})^{2} = 9a^{8} \). 2. Square the denominator: \( (5b^{6})^{2} = 25b^{12} \). 3. Combine: \( \frac{9a^{8}}{25b^{12}} \). **Result:** \( \frac{9a^{8}}{25b^{12}} \) --- ### (b) \( \left(\frac{16x^{5}y}{8xy^{4}}\right)^{3} \) 1. Simplify the fraction: \( \frac{16x^{5}y}{8xy^{4}} = 2x^{4}y^{-3} \). 2. Cube the result: \( (2x^{4}y^{-3})^{3} = 8x^{12}y^{-9} = \frac{8x^{12}}{y^{9}} \). **Result:** \( \frac{8x^{12}}{y^{9}} \) --- ### (d) \( \left(\frac{6x^{7}}{12x^{9}}\right)^{-2} \) 1. Simplify the fraction: \( \frac{6x^{7}}{12x^{9}} = \frac{1}{2x^{2}} \). 2. Apply the negative exponent: \( \left(\frac{1}{2x^{2}}\right)^{-2} = \frac{1}{(1/2)^{2}(x^{2})^{2}} = \frac{1-4x^{2}}{2x^{2}} \). **Result:** \( \frac{1-4x^{2}}{2x^{2}} \) --- ### (c) \( \left(\frac{2a^{3} \cdot 3a^{2}}{6(a^{3})^{2}}\right)^{2} \) 1. Simplify the fraction: \( \frac{6a^{5}}{6a^{6}} = \frac{1}{a} \). 2. Square the result: \( \left(\frac{1}{a}\right)^{2} = \frac{1}{a^{2}} \). **Result:** \( \frac{1}{a^{2}} \) --- ### (g) \( \frac{(x^{-2}y^{4})^{2}}{x^{2}y^{-3}} \) 1. Square the numerator: \( (x^{-2}y^{4})^{2} = x^{-4}y^{8} \). 2. Combine: \( \frac{x^{-4}y^{8}}{x^{2}y^{-3}} = x^{-4-2}y^{8-(-3)} = x^{-6}y^{11} \). 3. Rewrite: \( \frac{y^{11}}{x^{6}} \). **Result:** \( \frac{y^{11}}{x^{6}} \) --- ### (h) \( \frac{2(a^{-2}b^{2})^{-3} \times (ab)}{(2b^{-6})^{2}} \) 1. Simplify the numerator: \( (a^{-2}b^{2})^{-3} = a^{6}b^{-6} \). 2. Combine: \( 2a^{6}b^{-6} \cdot ab = 2a^{7}b^{-5} \). 3. Simplify the denominator: \( (2b^{-6})^{2} = 4b^{-12} \). 4. Combine: \( \frac{2a^{7}b^{-5}}{4b^{-12}} = \frac{a^{7}b^{7}}{2} \). **Result:** \( \frac{a^{7}b^{7}}{2} \) --- ### Summary of Results: - (q) \( 144x^{16} \) - (r) \( 648a^{12} \) - (a) \( \frac{9a^{8}}{25b^{12}} \) - (b) \( \frac{8x^{12}}{y^{9}} \) - (d) \( \frac{1-4x^{2}}{2x^{2}} \) - (c) \( \frac{1}{a^{2}} \) - (g) \( \frac{y^{11}}{x^{6}} \) - (h) \( \frac{a^{7}b^{7}}{2} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When it comes to simplifying exponents and factoring in mathematical expressions, the laws of exponents come into play beautifully! For instance, remember that when you raise a power to a power, you multiply the exponents (like \((x^m)^n = x^{m \cdot n}\)), and when you multiply like bases, you add the exponents (like \(x^m \cdot x^n = x^{m+n}\)). These foundational rules lighten the load during simplification! Have you ever stumbled while simplifying expressions? A common mistake is forgetting to apply the distributive property, which is crucial when working with coefficients and variables. For example, if dealing with \((3x^4)^2\), don't overlook squaring both the coefficient and the variable (resulting in \(9x^8\)). Watch out for those pesky negatives in the exponent too, as they can flip fractions!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad