Question
upstudy study bank question image url

Evaluate the following: \( \begin{array}{lllll}\text { a) } i^{13} & \text { (b) } 2 i^{3} & \text { (c) } i^{7} & \text { (d) } i^{44} & \text { (e) } i^{29}\end{array} \)

Ask by Kelly Cruz. in Nigeria
Jan 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \( i \) b) \( -2i \) c) \( -i \) d) \( 1 \) e) \( i \)

Solution

Let's evaluate each expression using the properties of the imaginary unit \( i \), where \( i = \sqrt{-1} \) and the cycle of powers of \( i \) repeats every four: \[ \begin{align*} i^1 &= i \\ i^2 &= -1 \\ i^3 &= -i \\ i^4 &= 1 \\ i^5 &= i \quad (\text{and so on}) \end{align*} \] For any integer exponent \( n \), the value of \( i^n \) depends on the remainder when \( n \) is divided by 4. Let's apply this to each part: ### a) \( i^{13} \) \[ 13 \div 4 = 3 \text{ with a remainder of } 1 \\ \Rightarrow i^{13} = i^1 = i \] ### b) \( 2i^{3} \) \[ 3 \div 4 = 0 \text{ with a remainder of } 3 \\ \Rightarrow i^{3} = -i \\ \Rightarrow 2i^{3} = 2(-i) = -2i \] ### c) \( i^{7} \) \[ 7 \div 4 = 1 \text{ with a remainder of } 3 \\ \Rightarrow i^{7} = i^{4 \times 1 + 3} = i^4 \cdot i^3 = 1 \cdot (-i) = -i \] ### d) \( i^{44} \) \[ 44 \div 4 = 11 \text{ with a remainder of } 0 \\ \Rightarrow i^{44} = i^{4 \times 11} = (i^4)^{11} = 1^{11} = 1 \] ### e) \( i^{29} \) \[ 29 \div 4 = 7 \text{ with a remainder of } 1 \\ \Rightarrow i^{29} = i^1 = i \] ### Summary of Results: \[ \begin{align*} \text{a) } i^{13} &= i \\ \text{b) } 2i^{3} &= -2i \\ \text{c) } i^{7} &= -i \\ \text{d) } i^{44} &= 1 \\ \text{e) } i^{29} &= i \end{align*} \] Answer: a) i; b) –2 i; c) –i; d) 1; e) i.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the powers of \(i\), we can use the fact that \(i\) is the imaginary unit defined as \(i = \sqrt{-1}\), and it has a cyclic pattern based on its powers: - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) After \(i^4\), the powers repeat every four terms. Therefore, to find \(i^n\) for any integer \(n\), we can find \(n \mod 4\) and use the results above. Now, let's evaluate each case: **a) \(i^{13}\)**: Calculate \(13 \mod 4\): \[ 13 \div 4 = 3 \quad \text{(remainder 1)} \] So, \(i^{13} = i^1 = i\). **b) \(2i^{3}\)**: Calculate \(i^{3}\): \[ i^{3} = -i \] Thus, \(2i^{3} = 2(-i) = -2i\). **c) \(i^{7}\)**: Calculate \(7 \mod 4\): \[ 7 \div 4 = 1 \quad \text{(remainder 3)} \] So, \(i^{7} = i^3 = -i\). **d) \(i^{44}\)**: Calculate \(44 \mod 4\): \[ 44 \div 4 = 11 \quad \text{(remainder 0)} \] So, \(i^{44} = i^0 = 1\). **e) \(i^{29}\)**: Calculate \(29 \mod 4\): \[ 29 \div 4 = 7 \quad \text{(remainder 1)} \] So, \(i^{29} = i^1 = i\). Putting it all together: - \( \text{a) } i^{13} = i \) - \( \text{b) } 2i^{3} = -2i \) - \( \text{c) } i^{7} = -i \) - \( \text{d) } i^{44} = 1 \) - \( \text{e) } i^{29} = i \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy