Question
upstudy study bank question image url

\( \frac { \sqrt { 10 ^ { 2009 } } } { 10 ^ { 2011 } \cdot \sqrt { 10 ^ { 2007 } } } \quad \frac { 5 ^ { 2007 } + 5 ^ { 2010 } } { 5 ^ { 2008 } + 5 ^ { 2009 } } \)

Ask by Salazar Flynn. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The first expression simplifies to \( 10^{-2010} \) and the second expression simplifies to \( 4.2 \).

Solution

Calculate or simplify the expression \( \frac{\sqrt{10^{2009}}}{10^{2011} \cdot \sqrt{10^{2007}}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{\sqrt{10^{2009}}}{10^{2011}\sqrt{10^{2007}}}\) - step1: Simplify the root: \(\frac{\sqrt{10^{2009}}}{10^{2011}\times 10^{1003}\sqrt{10}}\) - step2: Simplify the root: \(\frac{10^{1004}\sqrt{10}}{10^{2011}\times 10^{1003}\sqrt{10}}\) - step3: Multiply: \(\frac{10^{1004}\sqrt{10}}{10^{3014}\sqrt{10}}\) - step4: Reduce the fraction: \(\frac{1}{10^{2010}}\) Calculate or simplify the expression \( \frac{5^{2007} + 5^{2010}}{5^{2008} + 5^{2009}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{5^{2007}+5^{2010}}{5^{2008}+5^{2009}}\) - step1: Add the numbers: \(\frac{126\times 5^{2007}}{5^{2008}+5^{2009}}\) - step2: Add the numbers: \(\frac{126\times 5^{2007}}{6\times 5^{2008}}\) - step3: Reduce the fraction: \(\frac{21}{5}\) The simplified form of the first expression is \( \frac{1}{10^{2010}} \) or \( 10^{-2010} \). The simplified form of the second expression is \( \frac{21}{5} \) or \( 4\frac{1}{5} \) or \( 4.2 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's simplify the expression step by step. 1. **First expression:** We start with the first part, which is \( \frac { \sqrt { 10 ^ { 2009 } } } { 10 ^ { 2011 } \cdot \sqrt { 10 ^ { 2007 } } } \). We can simplify \( \sqrt{10^{2009}} = 10^{2009/2} = 10^{1004.5} \) and \( \sqrt{10^{2007}} = 10^{2007/2} = 10^{1003.5} \). Thus, the denominator becomes: \[ 10^{2011} \cdot \sqrt{10^{2007}} = 10^{2011} \cdot 10^{1003.5} = 10^{2011 + 1003.5} = 10^{3014.5}. \] Now, we have: \[ \frac{10^{1004.5}}{10^{3014.5}} = 10^{1004.5 - 3014.5} = 10^{-2010}. \] 2. **Second expression:** Next, we simplify the second part, which is \( \frac { 5 ^ { 2007 } + 5 ^ { 2010 } } { 5 ^ { 2008 } + 5 ^ { 2009 } } \). Factoring out \( 5^{2007} \) from the numerator: \[ 5^{2007}(1 + 5^{3}) = 5^{2007}(1 + 125) = 5^{2007} \cdot 126. \] Now factor out \( 5^{2008} \) from the denominator: \[ 5^{2008}(1 + 5^{1}) = 5^{2008}(1 + 5) = 5^{2008} \cdot 6. \] This means we can now rewrite the expression as: \[ \frac{5^{2007} \cdot 126}{5^{2008} \cdot 6} = \frac{126}{6} = 21. \] Putting everything together, our final expression is: \[ 10^{-2010} \cdot 21. \] Hence, the final answer is: \[ 21 \times 10^{-2010}. \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy