Question
upstudy study bank question image url

4. Prove the following identities: \( 4.1 \quad \cos ^{2} x+\sin x \cdot \cos x \cdot \tan x=1 \) -sit \( 4.2 \quad \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=2 \cos ^{2} \theta-1 \)

Ask by Burns Mcguire. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Proof of 4.1: cos²x + sin x · cos x · tan x = 1 = cos²x + sin²x = 1 Proof of 4.2: (1 - tan²θ)/(1 + tan²θ) = 2 cos²θ - 1

Solution

We will prove both identities using basic algebraic manipulations and fundamental trigonometric definitions. ────────────────────────────── Proof of 4.1: ────────────────────────────── Identity: cos²x + sin x · cos x · tan x = 1 Step 1. Write tan x in terms of sine and cosine:   tan x = sin x / cos x       (provided cos x ≠ 0). Step 2. Substitute tan x into the expression:   cos²x + sin x · cos x · (sin x / cos x). Step 3. Simplify the expression:   cos²x + (sin x · cos x · sin x) / cos x     = cos²x + sin²x      (since cos x cancels in the second term). Step 4. Use the Pythagorean identity:   cos²x + sin²x = 1. Thus, the given identity is proved. ────────────────────────────── Proof of 4.2: ────────────────────────────── Identity: (1 - tan²θ) / (1 + tan²θ) = 2 cos²θ - 1 Step 1. Write tan²θ in terms of sine and cosine:   tan²θ = sin²θ / cos²θ      (again, provided cosθ ≠ 0). Step 2. Substitute tan²θ into the left-hand side:   (1 - (sin²θ / cos²θ)) / (1 + (sin²θ / cos²θ)). Step 3. Create common denominators for the numerator and denominator:   = ((cos²θ - sin²θ)/cos²θ) / ((cos²θ + sin²θ)/cos²θ). Step 4. Simplify the expression:   = (cos²θ - sin²θ) / (cos²θ + sin²θ). Step 5. Use the Pythagorean identity:   cos²θ + sin²θ = 1.   Thus, the expression becomes:   = cos²θ - sin²θ. Step 6. Recognize that cos²θ - sin²θ is the cosine double-angle formula:   cos 2θ = cos²θ - sin²θ.   Also, one of the equivalent forms for cos 2θ is:   cos 2θ = 2 cos²θ - 1. Thus, we have shown that:   (1 - tan²θ)/(1 + tan²θ) = 2 cos²θ - 1. ────────────────────────────── Conclusion: Both identities are verified using fundamental trigonometric identities and algebraic manipulation.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To prove the first identity, we start with the left side: \[ \cos^2 x + \sin x \cdot \cos x \cdot \tan x \] Recall that \(\tan x = \frac{\sin x}{\cos x}\), so we can rewrite the term \(\sin x \cdot \cos x \cdot \tan x\) as: \[ \sin x \cdot \cos x \cdot \frac{\sin x}{\cos x} = \sin^2 x \] Thus, the left side becomes: \[ \cos^2 x + \sin^2 x \] Using the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\), we confirm that: \[ \cos^2 x + \sin^2 x = 1 \] So, the identity is proven. For the second identity, we start with the left side: \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \] Using the definition of \(\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\), we can rewrite this as: \[ \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta}}{\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta} \] Since \(\cos^2 \theta + \sin^2 \theta = 1\), this simplifies to: \[ \cos^2 \theta - \sin^2 \theta \] Now, using another trigonometric identity, we know: \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \] Thus, we have: \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos(2\theta) \] And since \(2 \cos^2 \theta - 1 = \cos(2\theta)\), the right side also equals \(\cos(2\theta)\). Hence, the identity is confirmed!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy