Question
5 Schreibe als Bruch. \( \begin{array}{ll}\text { a) } 2^{-1} ; 2^{-2} ; 2^{-3} ; 2^{-4} ; 2^{-5} & \text { b) } 5^{-2} ; 5^{-1} ; 5^{0} \\ \text { d) } 10^{-7} ; 10^{-6} ; 10^{-5} ; 10^{-10} & \text { e) } 6^{-1} ; 6^{-3} ; 6^{0}\end{array} \)
Ask by Hilton Erickson. in the United Kingdom
Nov 07,2024
Upstudy AI Solution
Tutor-Verified Answer
Answer
**a)** \( \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32} \)
**b)** \( \frac{1}{25}, \frac{1}{5}, 1 \)
**d)** \( \frac{1}{10000000}, \frac{1}{1000000}, \frac{1}{100000}, \frac{1}{10000000000} \)
**e)** \( \frac{1}{6}, \frac{1}{216}, 1 \)
Solution
Um die negativen Exponenten als Brüche zu schreiben, verwenden wir die Regel, dass \( a^{-n} = \frac{1}{a^n} \). Hier sind die Umwandlungen für die angegebenen Werte:
**a)**
- \( 2^{-1} = \frac{1}{2^1} = \frac{1}{2} \)
- \( 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \)
- \( 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \)
- \( 2^{-4} = \frac{1}{2^4} = \frac{1}{16} \)
- \( 2^{-5} = \frac{1}{2^5} = \frac{1}{32} \)
**b)**
- \( 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \)
- \( 5^{-1} = \frac{1}{5^1} = \frac{1}{5} \)
- \( 5^{0} = 1 \) (da jede Zahl hoch 0 gleich 1 ist)
**d)**
- \( 10^{-7} = \frac{1}{10^7} = \frac{1}{10000000} \)
- \( 10^{-6} = \frac{1}{10^6} = \frac{1}{1000000} \)
- \( 10^{-5} = \frac{1}{10^5} = \frac{1}{100000} \)
- \( 10^{-10} = \frac{1}{10^{10}} = \frac{1}{10000000000} \)
**e)**
- \( 6^{-1} = \frac{1}{6^1} = \frac{1}{6} \)
- \( 6^{-3} = \frac{1}{6^3} = \frac{1}{216} \)
- \( 6^{0} = 1 \)
Zusammengefasst:
**a)** \( \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32} \)
**b)** \( \frac{1}{25}, \frac{1}{5}, 1 \)
**d)** \( \frac{1}{10000000}, \frac{1}{1000000}, \frac{1}{100000}, \frac{1}{10000000000} \)
**e)** \( \frac{1}{6}, \frac{1}{216}, 1 \)
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Beyond the Answer
a) \( 2^{-1} = \frac{1}{2}, \quad 2^{-2} = \frac{1}{4}, \quad 2^{-3} = \frac{1}{8}, \quad 2^{-4} = \frac{1}{16}, \quad 2^{-5} = \frac{1}{32} \) b) \( 5^{-2} = \frac{1}{25}, \quad 5^{-1} = \frac{1}{5}, \quad 5^{0} = 1 \) d) \( 10^{-7} = \frac{1}{10^7}, \quad 10^{-6} = \frac{1}{10^6}, \quad 10^{-5} = \frac{1}{10^5}, \quad 10^{-10} = \frac{1}{10^{10}} \) e) \( 6^{-1} = \frac{1}{6}, \quad 6^{-3} = \frac{1}{6^3}, \quad 6^{0} = 1 \)