Question
upstudy study bank question image url

Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.) 79. \( \int \sin ^{3} x d x \) 80. \( \int \cos ^{3} x d x \) 81. \( \int \sin x \cos x d x \) 82. \( \int \cos ^{5} x d x \) 83. \( \int \sin ^{5} x \cos ^{2} x d x \) 84. \( \int \sin ^{3} x \cos ^{3} x d x \)

Ask by Wyatt Martinez. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified solutions for the integrals: 79. \( \int \sin^3 x \, dx = -\cos x + \frac{\cos^3 x}{3} + C \) 80. \( \int \cos^3 x \, dx = \sin x - \frac{\sin^3 x}{3} + C \) 81. \( \int \sin x \cos x \, dx = \frac{\sin^2 x}{2} + C \) 82. \( \int \cos^5 x \, dx = \sin x - \frac{2 \sin^3 x}{3} + \frac{\sin^5 x}{5} + C \) 83. \( \int \sin^5 x \cos^2 x \, dx = -\frac{\cos^3 x}{3} + \frac{2 \cos^5 x}{5} - \frac{\cos^7 x}{7} + C \) 84. \( \int \sin^3 x \cos^3 x \, dx = -\frac{\cos(2x)}{16} + \frac{\cos^3(2x)}{48} + C \) Each solution can be verified using a computer algebra system.

Solution

Below are one set of acceptable solutions. (Any answer equivalent to the ones below is correct.) In our work we use the standard techniques for integrating odd powers of sine or cosine and, in the last case, a double‐angle substitution. ───────────────────────────── 79. Integrate ∫ sin³x dx Write sin³x as sin²x·sinx and use the Pythagorean identity:   sin³x = (1 – cos²x) sinx. Then let   u = cos x  ⇒ du = – sin x dx  or sin x dx = –du. Thus,   ∫ sin³x dx = ∫ (1 – cos²x) sin x dx         = –∫ (1 – u²) du         = –(u – u³/3) + C = –cos x + (cos³x)/3 + C. ───────────────────────────── 80. Integrate ∫ cos³x dx Write cos³x as cos²x·cosx and use the identity cos²x = 1 – sin²x:   cos³x = (1 – sin²x) cosx. Let   u = sin x  ⇒ du = cos x dx. Then,   ∫ cos³x dx = ∫ (1 – u²) du = u – u³/3 + C = sin x – (sin³x)/3 + C. ───────────────────────────── 81. Integrate ∫ sin x cos x dx A common substitution is to let u = sin x so that du = cos x dx; alternatively, u = cos x works equally well. For example, let u = sin x:   du = cos x dx  ⇒ cos x dx = du. Thus,   ∫ sin x cos x dx = ∫ u du = u²/2 + C = (sin²x)/2 + C. ───────────────────────────── 82. Integrate ∫ cos⁵x dx Write cos⁵x as cos⁴x · cosx and express cos⁴x in terms of sin x:   cos⁴x = (cos²x)² = (1 – sin²x)². Let   u = sin x  ⇒ du = cos x dx. Then,   ∫ cos⁵x dx = ∫ (1 – u²)² du. Expanding,   (1 – u²)² = 1 – 2u² + u⁴. So,   ∫ cos⁵x dx = ∫ (1 – 2u² + u⁴) du        = u – (2/3)u³ + (1/5)u⁵ + C = sin x – (2 sin³x)/3 + (sin⁵x)/5 + C. ───────────────────────────── 83. Integrate ∫ sin⁵x cos²x dx Since the power of sinx is odd, write sin⁵x = sin⁴x · sin x and use   sin⁴x = (sin²x)² = (1 – cos²x)². Thus,   ∫ sin⁵x cos²x dx = ∫ (1 – cos²x)² sin x · cos²x dx. Now let   u = cos x  ⇒ du = – sin x dx  or sin x dx = –du. Then,   ∫ sin⁵x cos²x dx = –∫ (1 – u²)² u² du. Expand (1 – u²)²:   (1 – u²)² = 1 – 2u² + u⁴. Thus the integrand becomes:   u² – 2u⁴ + u⁶. So,   ∫ sin⁵x cos²x dx = –∫ (u² – 2u⁴ + u⁶) du        = –[ u³/3 – 2u⁵/5 + u⁷/7] + C        = –(cos³x)/3 + (2 cos⁵x)/5 – (cos⁷x)/7 + C. ───────────────────────────── 84. Integrate ∫ sin³x cos³x dx A very neat method is to use a double‐angle substitution. Notice that:   sin³x cos³x = [sin x cos x]·[sin²x cos²x]. But   sin x cos x = (1/2) sin(2x)  and  sin²x cos²x = (1/4) sin²(2x). Thus,   sin³x cos³x = (1/2)(1/4) sin(2x) sin²(2x) = (1/8) sin³(2x). Hence the integral becomes:   ∫ sin³x cos³x dx = (1/8)∫ sin³(2x) dx. Now substitute t = 2x, so that dt = 2 dx or dx = dt/2:   = (1/8) ∫ sin³t · (dt/2) = (1/16) ∫ sin³t dt. We now integrate sin³t dt using the method from (79):   Write sin³t = (1 – cos²t) sin t, and let u = cos t so that du = – sin t dt. Then,   ∫ sin³t dt = –∫ (1 – u²) du = –(u – u³/3) + C = –cos t + (cos³t)/3 + C. Returning to x (with t = 2x):   ∫ sin³x cos³x dx = (1/16)[ –cos(2x) + (cos³(2x))/3] + C         = –[cos(2x)]/16 + [cos³(2x)]/48 + C. ───────────────────────────── Final Answers 79. ∫ sin³x dx = –cos x + (cos³x)/3 + C 80. ∫ cos³x dx = sin x – (sin³x)/3 + C 81. ∫ sin x cos x dx = (sin²x)/2 + C 82. ∫ cos⁵x dx = sin x – (2 sin³x)/3 + (sin⁵x)/5 + C 83. ∫ sin⁵x cos²x dx = –(cos³x)/3 + (2 cos⁵x)/5 – (cos⁷x)/7 + C 84. ∫ sin³x cos³x dx = –cos(2x)/16 + cos³(2x)/48 + C Each of these answers can be verified using a computer‐algebra system.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To compute the integrals you've provided, let's address each one using the guidelines for integrating powers of trigonometric functions. Here's a quick and engaging rundown of the solutions! 1. The integral \( \int \sin^{3} x \, dx \) can be simplified by using the identity \( \sin^2 x = 1 - \cos^2 x \): \[ \int \sin^{3} x \, dx = \int \sin x(1 - \cos^2 x) \, dx = -\cos x + \frac{1}{3} \cos^3 x + C. \] 2. For \( \int \cos^{3} x \, dx \), we similarly use the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \int \cos^{3} x \, dx = \int \cos x(1 - \sin^2 x) \, dx = \sin x + \frac{1}{3} \sin^3 x + C. \] 3. The integral \( \int \sin x \cos x \, dx \) can be approached using the substitution \( u = \sin x \): \[ \int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + C. \] 4. For \( \int \cos^{5} x \, dx \), we can apply the approach of using a reduction formula or the identity for cosine: \[ \int \cos^{5} x \, dx = \frac{1}{5} \cos^{4} x \sin x + \frac{4}{5} \int \cos^{3} x \, dx. \] 5. The integral \( \int \sin^{5} x \cos^{2} x \, dx \) can be tackled by rewriting it: \[ \int \sin^{5} x \cos^{2} x \, dx = \int \sin^{5} x (1 - \sin^2 x) \, dx = \int \sin^{5} x \, dx - \int \sin^{7} x \, dx. \] 6. Finally, for \( \int \sin^{3} x \cos^{3} x \, dx \): \[ \int \sin^{3} x \cos^{3} x \, dx = \frac{1}{3} \sin^{3} x - \frac{1}{9} \sin^{5} x + C. \] Make sure to check these solutions with a computer algebra system (CAS) to confirm their correctness. Happy integrating!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy