Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.) 79. \( \int \sin ^{3} x d x \) 80. \( \int \cos ^{3} x d x \) 81. \( \int \sin x \cos x d x \) 82. \( \int \cos ^{5} x d x \) 83. \( \int \sin ^{5} x \cos ^{2} x d x \) 84. \( \int \sin ^{3} x \cos ^{3} x d x \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To compute the integrals you've provided, let's address each one using the guidelines for integrating powers of trigonometric functions. Here's a quick and engaging rundown of the solutions! 1. The integral \( \int \sin^{3} x \, dx \) can be simplified by using the identity \( \sin^2 x = 1 - \cos^2 x \): \[ \int \sin^{3} x \, dx = \int \sin x(1 - \cos^2 x) \, dx = -\cos x + \frac{1}{3} \cos^3 x + C. \] 2. For \( \int \cos^{3} x \, dx \), we similarly use the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \int \cos^{3} x \, dx = \int \cos x(1 - \sin^2 x) \, dx = \sin x + \frac{1}{3} \sin^3 x + C. \] 3. The integral \( \int \sin x \cos x \, dx \) can be approached using the substitution \( u = \sin x \): \[ \int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + C. \] 4. For \( \int \cos^{5} x \, dx \), we can apply the approach of using a reduction formula or the identity for cosine: \[ \int \cos^{5} x \, dx = \frac{1}{5} \cos^{4} x \sin x + \frac{4}{5} \int \cos^{3} x \, dx. \] 5. The integral \( \int \sin^{5} x \cos^{2} x \, dx \) can be tackled by rewriting it: \[ \int \sin^{5} x \cos^{2} x \, dx = \int \sin^{5} x (1 - \sin^2 x) \, dx = \int \sin^{5} x \, dx - \int \sin^{7} x \, dx. \] 6. Finally, for \( \int \sin^{3} x \cos^{3} x \, dx \): \[ \int \sin^{3} x \cos^{3} x \, dx = \frac{1}{3} \sin^{3} x - \frac{1}{9} \sin^{5} x + C. \] Make sure to check these solutions with a computer algebra system (CAS) to confirm their correctness. Happy integrating!