Pregunta
upstudy study bank question image url

Compute the following integrals using the guidelines for integrating powers of trigonometric functions. Use a CAS to check the solutions. (Note: Some of the problems may be done using techniques of integration learned previously.) 79. \( \int \sin ^{3} x d x \) 80. \( \int \cos ^{3} x d x \) 81. \( \int \sin x \cos x d x \) 82. \( \int \cos ^{5} x d x \) 83. \( \int \sin ^{5} x \cos ^{2} x d x \) 84. \( \int \sin ^{3} x \cos ^{3} x d x \)

Ask by Wyatt Martinez. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified solutions for the integrals: 79. \( \int \sin^3 x \, dx = -\cos x + \frac{\cos^3 x}{3} + C \) 80. \( \int \cos^3 x \, dx = \sin x - \frac{\sin^3 x}{3} + C \) 81. \( \int \sin x \cos x \, dx = \frac{\sin^2 x}{2} + C \) 82. \( \int \cos^5 x \, dx = \sin x - \frac{2 \sin^3 x}{3} + \frac{\sin^5 x}{5} + C \) 83. \( \int \sin^5 x \cos^2 x \, dx = -\frac{\cos^3 x}{3} + \frac{2 \cos^5 x}{5} - \frac{\cos^7 x}{7} + C \) 84. \( \int \sin^3 x \cos^3 x \, dx = -\frac{\cos(2x)}{16} + \frac{\cos^3(2x)}{48} + C \) Each solution can be verified using a computer algebra system.

Solución

Below are one set of acceptable solutions. (Any answer equivalent to the ones below is correct.) In our work we use the standard techniques for integrating odd powers of sine or cosine and, in the last case, a double‐angle substitution. ───────────────────────────── 79. Integrate ∫ sin³x dx Write sin³x as sin²x·sinx and use the Pythagorean identity:   sin³x = (1 – cos²x) sinx. Then let   u = cos x  ⇒ du = – sin x dx  or sin x dx = –du. Thus,   ∫ sin³x dx = ∫ (1 – cos²x) sin x dx         = –∫ (1 – u²) du         = –(u – u³/3) + C = –cos x + (cos³x)/3 + C. ───────────────────────────── 80. Integrate ∫ cos³x dx Write cos³x as cos²x·cosx and use the identity cos²x = 1 – sin²x:   cos³x = (1 – sin²x) cosx. Let   u = sin x  ⇒ du = cos x dx. Then,   ∫ cos³x dx = ∫ (1 – u²) du = u – u³/3 + C = sin x – (sin³x)/3 + C. ───────────────────────────── 81. Integrate ∫ sin x cos x dx A common substitution is to let u = sin x so that du = cos x dx; alternatively, u = cos x works equally well. For example, let u = sin x:   du = cos x dx  ⇒ cos x dx = du. Thus,   ∫ sin x cos x dx = ∫ u du = u²/2 + C = (sin²x)/2 + C. ───────────────────────────── 82. Integrate ∫ cos⁵x dx Write cos⁵x as cos⁴x · cosx and express cos⁴x in terms of sin x:   cos⁴x = (cos²x)² = (1 – sin²x)². Let   u = sin x  ⇒ du = cos x dx. Then,   ∫ cos⁵x dx = ∫ (1 – u²)² du. Expanding,   (1 – u²)² = 1 – 2u² + u⁴. So,   ∫ cos⁵x dx = ∫ (1 – 2u² + u⁴) du        = u – (2/3)u³ + (1/5)u⁵ + C = sin x – (2 sin³x)/3 + (sin⁵x)/5 + C. ───────────────────────────── 83. Integrate ∫ sin⁵x cos²x dx Since the power of sinx is odd, write sin⁵x = sin⁴x · sin x and use   sin⁴x = (sin²x)² = (1 – cos²x)². Thus,   ∫ sin⁵x cos²x dx = ∫ (1 – cos²x)² sin x · cos²x dx. Now let   u = cos x  ⇒ du = – sin x dx  or sin x dx = –du. Then,   ∫ sin⁵x cos²x dx = –∫ (1 – u²)² u² du. Expand (1 – u²)²:   (1 – u²)² = 1 – 2u² + u⁴. Thus the integrand becomes:   u² – 2u⁴ + u⁶. So,   ∫ sin⁵x cos²x dx = –∫ (u² – 2u⁴ + u⁶) du        = –[ u³/3 – 2u⁵/5 + u⁷/7] + C        = –(cos³x)/3 + (2 cos⁵x)/5 – (cos⁷x)/7 + C. ───────────────────────────── 84. Integrate ∫ sin³x cos³x dx A very neat method is to use a double‐angle substitution. Notice that:   sin³x cos³x = [sin x cos x]·[sin²x cos²x]. But   sin x cos x = (1/2) sin(2x)  and  sin²x cos²x = (1/4) sin²(2x). Thus,   sin³x cos³x = (1/2)(1/4) sin(2x) sin²(2x) = (1/8) sin³(2x). Hence the integral becomes:   ∫ sin³x cos³x dx = (1/8)∫ sin³(2x) dx. Now substitute t = 2x, so that dt = 2 dx or dx = dt/2:   = (1/8) ∫ sin³t · (dt/2) = (1/16) ∫ sin³t dt. We now integrate sin³t dt using the method from (79):   Write sin³t = (1 – cos²t) sin t, and let u = cos t so that du = – sin t dt. Then,   ∫ sin³t dt = –∫ (1 – u²) du = –(u – u³/3) + C = –cos t + (cos³t)/3 + C. Returning to x (with t = 2x):   ∫ sin³x cos³x dx = (1/16)[ –cos(2x) + (cos³(2x))/3] + C         = –[cos(2x)]/16 + [cos³(2x)]/48 + C. ───────────────────────────── Final Answers 79. ∫ sin³x dx = –cos x + (cos³x)/3 + C 80. ∫ cos³x dx = sin x – (sin³x)/3 + C 81. ∫ sin x cos x dx = (sin²x)/2 + C 82. ∫ cos⁵x dx = sin x – (2 sin³x)/3 + (sin⁵x)/5 + C 83. ∫ sin⁵x cos²x dx = –(cos³x)/3 + (2 cos⁵x)/5 – (cos⁷x)/7 + C 84. ∫ sin³x cos³x dx = –cos(2x)/16 + cos³(2x)/48 + C Each of these answers can be verified using a computer‐algebra system.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To compute the integrals you've provided, let's address each one using the guidelines for integrating powers of trigonometric functions. Here's a quick and engaging rundown of the solutions! 1. The integral \( \int \sin^{3} x \, dx \) can be simplified by using the identity \( \sin^2 x = 1 - \cos^2 x \): \[ \int \sin^{3} x \, dx = \int \sin x(1 - \cos^2 x) \, dx = -\cos x + \frac{1}{3} \cos^3 x + C. \] 2. For \( \int \cos^{3} x \, dx \), we similarly use the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \int \cos^{3} x \, dx = \int \cos x(1 - \sin^2 x) \, dx = \sin x + \frac{1}{3} \sin^3 x + C. \] 3. The integral \( \int \sin x \cos x \, dx \) can be approached using the substitution \( u = \sin x \): \[ \int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + C. \] 4. For \( \int \cos^{5} x \, dx \), we can apply the approach of using a reduction formula or the identity for cosine: \[ \int \cos^{5} x \, dx = \frac{1}{5} \cos^{4} x \sin x + \frac{4}{5} \int \cos^{3} x \, dx. \] 5. The integral \( \int \sin^{5} x \cos^{2} x \, dx \) can be tackled by rewriting it: \[ \int \sin^{5} x \cos^{2} x \, dx = \int \sin^{5} x (1 - \sin^2 x) \, dx = \int \sin^{5} x \, dx - \int \sin^{7} x \, dx. \] 6. Finally, for \( \int \sin^{3} x \cos^{3} x \, dx \): \[ \int \sin^{3} x \cos^{3} x \, dx = \frac{1}{3} \sin^{3} x - \frac{1}{9} \sin^{5} x + C. \] Make sure to check these solutions with a computer algebra system (CAS) to confirm their correctness. Happy integrating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad