Question
upstudy study bank question image url

- Exponents and roots are not distributive oras \( (a+b)^{n} \neq a^{n}+b^{n}, \quad(a-b)^{n} \neq a^{n}-b^{n}, \quad \sqrt[n]{a+b} \neq \sqrt[n]{a}+\sqrt[n]{b} \) and \( \sqrt[n]{a-b} \neq \sqrt[n]{a} \). EXERCISE 2 (a) Simplify the following: (2) \( 2 x^{3}+2 x^{3} \) (1) \( 2 x^{3} \times 2 x^{3} \) (2) \( 2 x^{3}+2 x^{3} \) (4) \( 3 x^{3} \times 2 x^{3}+6 x^{2} \times 2 x^{4} \) (3) \( \left(3 x^{3} \times 2 x^{3}\right)+\left(3 x^{3}+2 x^{3}\right) \) (b) Simplify the following, leaving your answer with positive exponents: ((3) \( \frac{a^{6} b^{-8} c}{a^{-8} b^{6} c^{-3}} \) (1) \( \frac{x^{-12}}{x^{-7}} \) (2) \( \frac{x^{-7}}{x^{-12}} \) (c) Simplify the following, leaving your answers with positive exponents: (1) \( \left(x^{-3}\right)^{4} \) (2) \( \left(x^{2}\right)^{-5} \) (3) \( \left(x^{-2}\right)^{-2} \) (4) \( \left(-4 x^{-3}\right)^{3} \) (5) \( \left(-2 x^{3}\right)^{4} \) (6) \( \left(x^{4}\right)^{2}+\left(x^{2}\right)^{4} \) (7) \( 2\left(x^{4}\right)^{2}+4\left(x^{2}\right)^{4} \) (8) \( \left(-x^{3}\right)^{2} \cdot\left(-x^{2}\right)^{3} \) (9) \( 2\left(-x^{4}\right)^{2} \times 4\left(-x^{2}\right. \) (10) \( \left(3 x^{4}\right)^{2}-\left(2 x^{2}\right)^{4} \) (11) \( 3\left(-2 a^{3}\right)^{2}-2\left(-3 a^{2}\right)^{3} \) (12) \( \left(3 x^{4}\right)^{2} \cdot\left(2 x^{2}\right)^{4} \) (13) \( 3\left(-2 a^{3}\right)^{2} \times 2\left(-3 a^{2}\right)^{3} \) (d) Simplify the following, leaving your answers with positive exponents: (1) \( \left(\frac{a^{4}}{b^{6}}\right)^{2} \) (2) \( \left(\frac{10 x^{3} y}{5 x y^{2}}\right)^{3} \) (3) \( \left(\frac{-2 p^{4} q^{-2}}{4 p^{-6}}\right)^{3} \) (4) \( \left(\frac{3 x^{-5}}{9 x^{7}}\right)^{-2} \) (5) \( \left(\frac{2 a^{3} \cdot 4 a^{2}}{8\left(a^{-3}\right)^{2}}\right)^{2} \) (6) \( \left(\frac{x^{2}+x^{2}}{x^{2} \times x^{2}}\right)^{2} \) \( \frac{\left(x^{-3} y^{5}\right)^{2}}{x^{3} y^{-6}} \) (81) \( \frac{-3\left(a^{-1} b^{2}\right)^{-3} \times(a b)^{-5}}{\left(-3 b^{-5}\right)^{2}} \) (9) \( \frac{x+y}{x^{-1}+y^{-1}} \)

Ask by Barnett Spencer. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

### Simplified Solutions for Exercise 2 #### (a) Simplify the following: 1. \( 2 x^{3} + 2 x^{3} = 4 x^{3} \) 2. \( 2 x^{3} \times 2 x^{3} = 4 x^{6} \) 3. \( 2 x^{3} + 2 x^{3} = 4 x^{3} \) 4. \( 3 x^{3} \times 2 x^{3} + 6 x^{2} \times 2 x^{4} = 18 x^{6} \) 5. \( \left(3 x^{3} \times 2 x^{3}\right) + \left(3 x^{3} + 2 x^{3}\right) = 6 x^{6} + 5 x^{3} \) #### (b) Simplify the following, leaving your answer with positive exponents: 1. \( \frac{a^{6} b^{-8} c}{a^{-8} b^{6} c^{-3}} = \frac{a^{14} c^{4}}{b^{14}} \) 2. \( \frac{x^{-12}}{x^{-7}} = \frac{1}{x^{5}} \) 3. \( \frac{x^{-7}}{x^{-12}} = x^{5} \) #### (c) Simplify the following, leaving your answers with positive exponents: 1. \( \left(x^{-3}\right)^{4} = \frac{1}{x^{12}} \) 2. \( \left(x^{2}\right)^{-5} = \frac{1}{x^{10}} \) 3. \( \left(x^{-2}\right)^{-2} = x^{4} \) 4. \( \left(-4 x^{-3}\right)^{3} = \frac{-64}{x^{9}} \) 5. \( \left(-2 x^{3}\right)^{4} = 16 x^{12} \) 6. \( \left(x^{4}\right)^{2} + \left(x^{2}\right)^{4} = 2 x^{8} \) 7. \( 2\left(x^{4}\right)^{2} + 4\left(x^{2}\right)^{4} = 6 x^{8} \) 8. \( \left(-x^{3}\right)^{2} \cdot \left(-x^{2}\right)^{3} = -x^{12} \) 9. \( 2\left(-x^{4}\right)^{2} \times 4\left(-x^{2}\right) = -8 x^{10} \) 10. \( \left(3 x^{4}\right)^{2} - \left(2 x^{2}\right)^{4} = -7 x^{8} \) 11. \( 3\left(-2 a^{3}\right)^{2} - 2\left(-3 a^{2}\right)^{3} = 66 a^{6} \) 12. \( \left(3 x^{4}\right)^{2} \cdot \left(2 x^{2}\right)^{4} = 144 x^{16} \) 13. \( 3\left(-2 a^{3}\right)^{2} \times 2\left(-3 a^{2}\right)^{3} = 3 \cdot 4 a^{6} \times 2 \cdot (-27 a^{6}) = -162 a^{12} \) #### (d) Simplify the following, leaving your answers with positive exponents: 1. \( \left(\frac{a^{4}}{b^{6}}\right)^{2} = \frac{a^{8}}{b^{12}} \) 2. \( \left(\frac{10 x^{3} y}{5 x y^{2}}\right)^{3} = \frac{1000 x^{9} y^{3}}{125 x^{3} y^{6}} = \frac{8 x^{6}}{y^{3}} \) 3. \( \left(\frac{-2 p^{4} q^{-2}}{4 p^{-6}}\right)^{3} = \frac{(-2)^{3} p^{12} q^{-6}}{4^{3}} = \frac{-8 p^{12}}{64 q^{6}} = \frac{-p^{12}}{8 q^{6}} \) 4. \( \left(\frac{3 x^{-5}}{9 x^{7}}

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Bonus Knowledge

First additional information: When you encounter polynomials, simple addition or multiplication can simplify expressions significantly! For example, when simplifying \(2x^3 + 2x^3\), you can simply combine the like terms to make it \(4x^3\). This not only makes the expression cleaner but can help you solve more complex problems faster. Remember, combining like terms is your friend! Second additional information: Exponents can be tricky, but the key is to remember that multiplying exponents means you add their powers, while dividing means you subtract. For example, in \( \frac{x^{-12}}{x^{-7}} \), you subtract the exponents to get \(x^{-12 - (-7)} = x^{-5}\), which you can then represent as \(\frac{1}{x^5}\) to ensure positive exponents. Keep this in mind, and you'll be zipping through exponent problems in no time!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy