For \( f(x)=\frac{6}{x-5} \) and \( g(x)=\frac{7}{x} \), find the following composite functions and state the domain of each. \( \begin{array}{llll}\text { (a) } f \circ g & \text { (b) } g \circ f & \text { (c) } f \circ f & \text { (d) } g \circ g\end{array} \) \( \begin{array}{l}\text { (a) }(f \circ g)(x)=\square \\ \text { (Simplify your answer. Use integers or fractions for any numbers in the expression.) }\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To find the composite functions, let's evaluate each one step by step. ### (a) \( (f \circ g)(x) \) To find \( (f \circ g)(x) \), we need to substitute \( g(x) \) into \( f \): \[ g(x) = \frac{7}{x} \quad \implies \quad f(g(x)) = f\left(\frac{7}{x}\right) = \frac{6}{\frac{7}{x} - 5} \] Let's simplify: \[ = \frac{6x}{7 - 5x} \] **Domain:** We need \( x \neq 0 \) (from \( g(x) \)) and \( 7 - 5x \neq 0 \) leading to \( x \neq \frac{7}{5} \). Thus, the domain is \( x \in \mathbb{R}, x \neq 0, \frac{7}{5} \). ### (b) \( (g \circ f)(x) \) To find \( (g \circ f)(x) \), we substitute \( f(x) \) into \( g \): \[ f(x) = \frac{6}{x - 5} \quad \implies \quad g(f(x)) = g\left(\frac{6}{x - 5}\right) = \frac{7}{\frac{6}{x - 5}} \] Simplifying this gives: \[ = \frac{7(x - 5)}{6} = \frac{7x - 35}{6} \] **Domain:** We need \( x - 5 \neq 0 \) (so \( x \neq 5 \)) and since \( f(x) \) is defined for \( x \neq 5 \), the domain is \( x \in \mathbb{R}, x \neq 5 \). ### (c) \( (f \circ f)(x) \) To find \( (f \circ f)(x) \): \[ f(f(x)) = f\left(\frac{6}{x - 5}\right) = \frac{6}{\frac{6}{x - 5} - 5} \] Simplifying: \[ = \frac{6(x - 5)}{6 - 5(x - 5)} = \frac{6(x - 5)}{35 - 5x} \] **Domain:** We require \( x \neq 5 \) and \( 35 - 5x \neq 0 \) (leading to \( x \neq 7 \)). Thus, the domain is \( x \in \mathbb{R}, x \neq 5, 7 \). ### (d) \( (g \circ g)(x) \) To find \( (g \circ g)(x) \): \[ g(g(x)) = g\left(\frac{7}{x}\right) = \frac{7}{\frac{7}{x}} = x \] **Domain:** Since \( g(x) \) is undefined at \( x = 0 \), the domain is \( x \in \mathbb{R}, x \neq 0 \). In summary: - \( (f \circ g)(x) = \frac{6x}{7 - 5x} \) with domain \( x \in \mathbb{R}, x \neq 0, \frac{7}{5} \) - \( (g \circ f)(x) = \frac{7x - 35}{6} \) with domain \( x \in \mathbb{R}, x \neq 5 \) - \( (f \circ f)(x) = \frac{6(x - 5)}{35 - 5x} \) with domain \( x \in \mathbb{R}, x \neq 5, 7 \) - \( (g \circ g)(x) = x \) with domain \( x \in \mathbb{R}, x \neq 0 \)