Answer
1. **Order of Electromagnetic Waves:**
- **Increasing Frequencies:** Radio waves, Microwaves, Infrared light, Visible light, Ultraviolet light, X-rays
- **Increasing Wavelengths:** X-rays, Ultraviolet light, Visible light, Infrared light, Microwaves, Radio waves
- **Increasing Energy:** Radio waves, Microwaves, Infrared light, Visible light, Ultraviolet light, X-rays
2. **Frequencies:**
- Radio wave (2 m): \( 1.5 \times 10^8 \, \text{Hz} \)
- Yellow light (600 nm): \( 5 \times 10^{14} \, \text{Hz} \)
- X-ray (\( 10^{-12} \, \text{m} \)): \( 3 \times 10^{20} \, \text{Hz} \)
3. **Wavelengths:**
- Cell phone (2 GHz): \( 0.15 \, \text{m} \)
- Ultraviolet light (\( 10^{16} \, \text{Hz} \)): \( 3 \times 10^{-8} \, \text{m} \)
- Gamma ray (\( 10^{19} \, \text{Hz} \)): \( 3 \times 10^{-11} \, \text{m} \)
Solution
Let's break down the problem step by step.
### 1. Arranging the types of electromagnetic waves
The electromagnetic spectrum can be arranged based on frequency, wavelength, and energy. The general order from lowest to highest frequency (and thus longest to shortest wavelength and lowest to highest energy) is:
- Radio waves
- Microwaves
- Infrared light
- Visible light
- Ultraviolet light
- X-rays
- Gamma rays
#### a) Increasing frequencies:
- Radio waves
- Microwaves
- Infrared light
- Visible light
- Ultraviolet light
- X-rays
#### b) Increasing wavelengths:
- X-rays
- Ultraviolet light
- Visible light
- Infrared light
- Microwaves
- Radio waves
#### c) Increasing energy:
- Radio waves
- Microwaves
- Infrared light
- Visible light
- Ultraviolet light
- X-rays
### 2. Calculating the frequencies of the waves
The frequency \( f \) of a wave can be calculated using the formula:
\[
f = \frac{c}{\lambda}
\]
where:
- \( c \) is the speed of light (\( 3 \times 10^8 \, \text{m/s} \))
- \( \lambda \) is the wavelength in meters.
#### a) Radio wave with a wavelength of 2 m:
\[
f = \frac{3 \times 10^8 \, \text{m/s}}{2 \, \text{m}} = 1.5 \times 10^8 \, \text{Hz}
\]
#### b) Yellow light with a wavelength of 600 nm (which is \( 600 \times 10^{-9} \, \text{m} \)):
\[
f = \frac{3 \times 10^8 \, \text{m/s}}{600 \times 10^{-9} \, \text{m}} = 5 \times 10^{14} \, \text{Hz}
\]
#### c) X-ray with a wavelength of \( 10^{-12} \, \text{m} \):
\[
f = \frac{3 \times 10^8 \, \text{m/s}}{10^{-12} \, \text{m}} = 3 \times 10^{20} \, \text{Hz}
\]
### 3. Calculating the wavelengths of the waves
The wavelength \( \lambda \) can be calculated using the formula:
\[
\lambda = \frac{c}{f}
\]
#### a) Cell phone that sends frequencies of 2 GHz (which is \( 2 \times 10^9 \, \text{Hz} \)):
\[
\lambda = \frac{3 \times 10^8 \, \text{m/s}}{2 \times 10^9 \, \text{Hz}} = 0.15 \, \text{m}
\]
#### b) Ultraviolet light with a frequency of \( 10^{16} \, \text{Hz} \):
\[
\lambda = \frac{3 \times 10^8 \, \text{m/s}}{10^{16} \, \text{Hz}} = 3 \times 10^{-8} \, \text{m}
\]
#### c) Gamma ray with a frequency of \( 10^{19} \, \text{Hz} \):
\[
\lambda = \frac{3 \times 10^8 \, \text{m/s}}{10^{19} \, \text{Hz}} = 3 \times 10^{-11} \, \text{m}
\]
### Summary of Results
1. **Order of electromagnetic waves:**
- Increasing frequencies: Radio waves, Microwaves, Infrared light, Visible light, Ultraviolet light, X-rays
- Increasing wavelengths: X-rays, Ultraviolet light, Visible light, Infrared light, Microwaves, Radio waves
- Increasing energy: Radio waves, Microwaves, Infrared light, Visible light, Ultraviolet light, X-rays
2. **Frequencies:**
- Radio wave (2 m): \( 1.5 \times 10^8 \, \text{Hz} \)
- Yellow light (600 nm): \( 5 \times 10^{14} \, \text{Hz} \)
- X-ray (\( 10^{-12} \, \text{m} \)): \( 3 \times 10^{20} \, \text{Hz} \)
3. **Wavelengths:**
- Cell phone (2 GHz): \( 0.15 \, \text{m} \)
- Ultraviolet light (\( 10^{16} \, \text{Hz} \)): \( 3 \times 10^{-8} \, \text{m} \)
- Gamma ray (\( 10^{19} \, \text{Hz} \)): \( 3 \times 10^{-11} \, \text{m} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution