Question
upstudy study bank question image url

Considere la fórmula \( \frac{x-4}{x^{2}-16} \) Si se tiene que realizar en tu cuaderno una tabla de valores para resolver el proceso de aproximación. \( x \rightarrow 4 \) La conclusión es que \( y \rightarrow \)

Ask by Sullivan Fleming. in Mexico
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Cuando \( x \) se acerca a 4, \( y \) se acerca a 1/8.

Solution

Primero, observa la función:   y = (x – 4) / (x² – 16) Podemos factorizar el denominador:   x² – 16 = (x – 4)(x + 4) Entonces, para x ≠ 4, la función se simplifica a:   y = 1 / (x + 4) Al construir una tabla de valores cerca de x = 4, se tiene:   • Para x = 3.9: y = 1 / (3.9 + 4) ≈ 1 / 7.9 ≈ 0.1266   • Para x = 3.99: y = 1 / (3.99 + 4) ≈ 1 / 7.99 ≈ 0.1252   • Para x = 4.01: y = 1 / (4.01 + 4) ≈ 1 / 8.01 ≈ 0.1248   • Para x = 4.1: y = 1 / (4.1 + 4) ≈ 1 / 8.1 ≈ 0.1235 Como podemos ver, conforme x se aproxima a 4, y se aproxima a 1/8 (≈ 0.125). Por lo tanto, al analizar el proceso de aproximación, concluimos que:   Cuando x → 4, y → 1/8.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

La fórmula dada, \( \frac{x-4}{x^{2}-16} \), se puede simplificar al notar que \( x^2 - 16 \) es una diferencia de cuadrados que se puede factorizar como \( (x-4)(x+4) \). Esto nos permite simplificar la expresión a \( \frac{1}{x+4} \) para valores de \( x \) distintos de 4. Entonces, cuando \( x \) se aproxima a 4, \( y \) se aproxima a \( \frac{1}{4+4} = \frac{1}{8} \). Sin embargo, si intentas evaluar la función en \( x=4 \), obtendrás una indeterminación \( \frac{0}{0} \). Es importante tener en cuenta que el comportamiento de la función cambiará dependiendo de cómo te acerques a ese punto, ya que en ambos lados de 4 la función tiende a estabilizarse en \( \frac{1}{8} \). ¡Vaya aventura en el mundo de los límites!

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy