Question
upstudy study bank question image url

\( \begin{array}{ll}\text { c) } \frac{35^{a}-3.5^{a}}{2^{2 a} 7^{a}-3.2^{2 a}} & \text { d) } \frac{3^{a+1} \cdot 4^{a}+5.3^{a+1}}{4^{2 a}-25} \\ \text { e) } \frac{7^{a} \cdot 49-7^{a+2} \cdot 2^{-1}}{2^{-3}, 7^{a}} & \text { f) } \frac{2^{3 a-1}+\frac{3}{2}}{2^{4 a-1}+3.2^{a-1}}\end{array} \)

Ask by Lewis Donnelly. in South Africa
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**c)** \( \frac{5^{a}}{2^{2a}} \) **d)** \( \frac{3^{a+1}}{2^{2a}-5} \) **e)** \( 196 \) **f)** \( \frac{1}{2^{a}} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(7^{a}\times 49-7^{a+2}\times 2^{-1}\right)}{\left(2^{-3}\times 7^{a}\right)}\) - step1: Remove the parentheses: \(\frac{7^{a}\times 49-7^{a+2}\times 2^{-1}}{2^{-3}\times 7^{a}}\) - step2: Multiply the terms: \(\frac{7^{a+2}-7^{a+2}\times 2^{-1}}{2^{-3}\times 7^{a}}\) - step3: Multiply the terms: \(\frac{7^{a+2}-\frac{1}{2}\times 7^{a+2}}{2^{-3}\times 7^{a}}\) - step4: Rewrite the expression: \(\frac{7^{a+2}-\frac{1}{2}\times 7^{a+2}}{\frac{1}{8}\times 7^{a}}\) - step5: Subtract the terms: \(\frac{\frac{7^{a+2}}{2}}{\frac{1}{8}\times 7^{a}}\) - step6: Rewrite the expression: \(\frac{\frac{7^{a+2}}{2}}{\frac{7^{a}}{8}}\) - step7: Multiply by the reciprocal: \(\frac{7^{a+2}}{2}\times \frac{8}{7^{a}}\) - step8: Reduce the fraction: \(7^{2}\times 4\) - step9: Evaluate the power: \(49\times 4\) - step10: Multiply: \(196\) Calculate or simplify the expression \( (2^(3*a-1) + 3/2)/(2^(4*a-1) + 3*2^(a-1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2^{3a-1}+\frac{3}{2}\right)}{\left(2^{4a-1}+3\times 2^{a-1}\right)}\) - step1: Remove the parentheses: \(\frac{2^{3a-1}+\frac{3}{2}}{2^{4a-1}+3\times 2^{a-1}}\) - step2: Rewrite the expression: \(\frac{\frac{1}{2}\left(2^{a}\right)^{3}+\frac{3}{2}}{\frac{1}{2}\left(2^{a}\right)^{4}+\frac{3}{2}\times 2^{a}}\) - step3: Rewrite the expression: \(\frac{\frac{\left(2^{a}\right)^{3}+3}{2}}{\frac{1}{2}\left(2^{a}\right)^{4}+\frac{3}{2}\times 2^{a}}\) - step4: Rewrite the expression: \(\frac{\frac{\left(2^{a}\right)^{3}+3}{2}}{\frac{\left(2^{a}\right)^{4}+3\times 2^{a}}{2}}\) - step5: Multiply by the reciprocal: \(\frac{\left(2^{a}\right)^{3}+3}{2}\times \frac{2}{\left(2^{a}\right)^{4}+3\times 2^{a}}\) - step6: Rewrite the expression: \(\frac{\left(2^{a}\right)^{3}+3}{2}\times \frac{2}{2^{a}\left(\left(2^{a}\right)^{3}+3\right)}\) - step7: Reduce the fraction: \(1\times \frac{1}{2^{a}}\) - step8: Multiply the terms: \(\frac{1}{2^{a}}\) Calculate or simplify the expression \( (3^(a+1)*4^a + 5*3^(a+1))/(4^(2*a) - 25) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(3^{a+1}\times 4^{a}+5\times 3^{a+1}\right)}{\left(4^{2a}-25\right)}\) - step1: Remove the parentheses: \(\frac{3^{a+1}\times 4^{a}+5\times 3^{a+1}}{4^{2a}-25}\) - step2: Rewrite the expression: \(\frac{3\times 3^{a}\left(2^{a}\right)^{2}+15\times 3^{a}}{\left(2^{a}\right)^{4}-25}\) - step3: Factor the expression: \(\frac{3\times 3^{a}\left(\left(2^{a}\right)^{2}+5\right)}{\left(\left(2^{a}\right)^{2}+5\right)\left(\left(2^{a}\right)^{2}-5\right)}\) - step4: Reduce the fraction: \(\frac{3\times 3^{a}}{\left(2^{a}\right)^{2}-5}\) - step5: Calculate: \(\frac{3^{a+1}}{\left(2^{a}\right)^{2}-5}\) - step6: Calculate: \(\frac{3^{a+1}}{2^{2a}-5}\) Calculate or simplify the expression \( (35^a - 3*5^a)/(2^(2*a)*7^a - 3*2^(2*a)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(35^{a}-3\times 5^{a}\right)}{\left(2^{2a}\times 7^{a}-3\times 2^{2a}\right)}\) - step1: Remove the parentheses: \(\frac{35^{a}-3\times 5^{a}}{2^{2a}\times 7^{a}-3\times 2^{2a}}\) - step2: Multiply the terms: \(\frac{35^{a}-3\times 5^{a}}{28^{a}-3\times 2^{2a}}\) - step3: Rewrite the expression: \(\frac{5^{a}\times 7^{a}-3\times 5^{a}}{\left(2^{a}\right)^{2}\times 7^{a}-3\left(2^{a}\right)^{2}}\) - step4: Factor the expression: \(\frac{5^{a}\left(7^{a}-3\right)}{\left(2^{a}\right)^{2}\left(7^{a}-3\right)}\) - step5: Reduce the fraction: \(\frac{5^{a}}{\left(2^{a}\right)^{2}}\) - step6: Calculate: \(\frac{5^{a}}{2^{2a}}\) Here are the simplified results for each expression: **c)** \[ \frac{35^{a}-3 \cdot 5^{a}}{2^{2 a} 7^{a}-3 \cdot 2^{2 a}} = \frac{5^{a}}{2^{2a}} \] **d)** \[ \frac{3^{a+1} \cdot 4^{a}+5 \cdot 3^{a+1}}{4^{2 a}-25} = \frac{3^{a+1}}{2^{2a}-5} \] **e)** \[ \frac{7^{a} \cdot 49-7^{a+2} \cdot 2^{-1}}{2^{-3} \cdot 7^{a}} = 196 \] **f)** \[ \frac{2^{3 a-1}+\frac{3}{2}}{2^{4 a-1}+3 \cdot 2^{a-1}} = \frac{1}{2^{a}} \] If you have any further questions or need additional assistance, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To simplify the expression \(c)\) \(\frac{35^{a}-3.5^{a}}{2^{2 a} 7^{a}-3.2^{2 a}}\), notice that \(35^a = 5^a \cdot 7^a\) and \(5^a = (5^{\frac{1}{2}})^2 = \frac{(5^a)^2}{(5^a)^{\frac{1}{2}}}\). This opens up possibilities for factoring which helps in reducing the fraction. For item \(d)\), you have \(\frac{3^{a+1} \cdot 4^{a}+5.3^{a+1}}{4^{2 a}-25}\). The denominator can be recognized as a difference of squares: \(4^{2a} - 25 = (2^a - 5)(2^a + 5)\). Factoring the numerator could involve recognizing common terms across \(3^{a+1}\) to find common factors. Ready to dive deeper? Looking at these expressions isn't just about crunching numbers; it's about finding connections! Each simplification reflects a strategy in algebra, relying heavily on factoring and recognizing patterns. Whether for pure math or applications in physics or economics, leveraging these algebraic identities can lead to insightful solutions. Eager to decode more expressions? There’s a world of exploration in algebra waiting for you!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy