Responder
**c)** \( \frac{5^{a}}{2^{2a}} \)
**d)** \( \frac{3^{a+1}}{2^{2a}-5} \)
**e)** \( 196 \)
**f)** \( \frac{1}{2^{a}} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(7^{a}\times 49-7^{a+2}\times 2^{-1}\right)}{\left(2^{-3}\times 7^{a}\right)}\)
- step1: Remove the parentheses:
\(\frac{7^{a}\times 49-7^{a+2}\times 2^{-1}}{2^{-3}\times 7^{a}}\)
- step2: Multiply the terms:
\(\frac{7^{a+2}-7^{a+2}\times 2^{-1}}{2^{-3}\times 7^{a}}\)
- step3: Multiply the terms:
\(\frac{7^{a+2}-\frac{1}{2}\times 7^{a+2}}{2^{-3}\times 7^{a}}\)
- step4: Rewrite the expression:
\(\frac{7^{a+2}-\frac{1}{2}\times 7^{a+2}}{\frac{1}{8}\times 7^{a}}\)
- step5: Subtract the terms:
\(\frac{\frac{7^{a+2}}{2}}{\frac{1}{8}\times 7^{a}}\)
- step6: Rewrite the expression:
\(\frac{\frac{7^{a+2}}{2}}{\frac{7^{a}}{8}}\)
- step7: Multiply by the reciprocal:
\(\frac{7^{a+2}}{2}\times \frac{8}{7^{a}}\)
- step8: Reduce the fraction:
\(7^{2}\times 4\)
- step9: Evaluate the power:
\(49\times 4\)
- step10: Multiply:
\(196\)
Calculate or simplify the expression \( (2^(3*a-1) + 3/2)/(2^(4*a-1) + 3*2^(a-1)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2^{3a-1}+\frac{3}{2}\right)}{\left(2^{4a-1}+3\times 2^{a-1}\right)}\)
- step1: Remove the parentheses:
\(\frac{2^{3a-1}+\frac{3}{2}}{2^{4a-1}+3\times 2^{a-1}}\)
- step2: Rewrite the expression:
\(\frac{\frac{1}{2}\left(2^{a}\right)^{3}+\frac{3}{2}}{\frac{1}{2}\left(2^{a}\right)^{4}+\frac{3}{2}\times 2^{a}}\)
- step3: Rewrite the expression:
\(\frac{\frac{\left(2^{a}\right)^{3}+3}{2}}{\frac{1}{2}\left(2^{a}\right)^{4}+\frac{3}{2}\times 2^{a}}\)
- step4: Rewrite the expression:
\(\frac{\frac{\left(2^{a}\right)^{3}+3}{2}}{\frac{\left(2^{a}\right)^{4}+3\times 2^{a}}{2}}\)
- step5: Multiply by the reciprocal:
\(\frac{\left(2^{a}\right)^{3}+3}{2}\times \frac{2}{\left(2^{a}\right)^{4}+3\times 2^{a}}\)
- step6: Rewrite the expression:
\(\frac{\left(2^{a}\right)^{3}+3}{2}\times \frac{2}{2^{a}\left(\left(2^{a}\right)^{3}+3\right)}\)
- step7: Reduce the fraction:
\(1\times \frac{1}{2^{a}}\)
- step8: Multiply the terms:
\(\frac{1}{2^{a}}\)
Calculate or simplify the expression \( (3^(a+1)*4^a + 5*3^(a+1))/(4^(2*a) - 25) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(3^{a+1}\times 4^{a}+5\times 3^{a+1}\right)}{\left(4^{2a}-25\right)}\)
- step1: Remove the parentheses:
\(\frac{3^{a+1}\times 4^{a}+5\times 3^{a+1}}{4^{2a}-25}\)
- step2: Rewrite the expression:
\(\frac{3\times 3^{a}\left(2^{a}\right)^{2}+15\times 3^{a}}{\left(2^{a}\right)^{4}-25}\)
- step3: Factor the expression:
\(\frac{3\times 3^{a}\left(\left(2^{a}\right)^{2}+5\right)}{\left(\left(2^{a}\right)^{2}+5\right)\left(\left(2^{a}\right)^{2}-5\right)}\)
- step4: Reduce the fraction:
\(\frac{3\times 3^{a}}{\left(2^{a}\right)^{2}-5}\)
- step5: Calculate:
\(\frac{3^{a+1}}{\left(2^{a}\right)^{2}-5}\)
- step6: Calculate:
\(\frac{3^{a+1}}{2^{2a}-5}\)
Calculate or simplify the expression \( (35^a - 3*5^a)/(2^(2*a)*7^a - 3*2^(2*a)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(35^{a}-3\times 5^{a}\right)}{\left(2^{2a}\times 7^{a}-3\times 2^{2a}\right)}\)
- step1: Remove the parentheses:
\(\frac{35^{a}-3\times 5^{a}}{2^{2a}\times 7^{a}-3\times 2^{2a}}\)
- step2: Multiply the terms:
\(\frac{35^{a}-3\times 5^{a}}{28^{a}-3\times 2^{2a}}\)
- step3: Rewrite the expression:
\(\frac{5^{a}\times 7^{a}-3\times 5^{a}}{\left(2^{a}\right)^{2}\times 7^{a}-3\left(2^{a}\right)^{2}}\)
- step4: Factor the expression:
\(\frac{5^{a}\left(7^{a}-3\right)}{\left(2^{a}\right)^{2}\left(7^{a}-3\right)}\)
- step5: Reduce the fraction:
\(\frac{5^{a}}{\left(2^{a}\right)^{2}}\)
- step6: Calculate:
\(\frac{5^{a}}{2^{2a}}\)
Here are the simplified results for each expression:
**c)**
\[
\frac{35^{a}-3 \cdot 5^{a}}{2^{2 a} 7^{a}-3 \cdot 2^{2 a}} = \frac{5^{a}}{2^{2a}}
\]
**d)**
\[
\frac{3^{a+1} \cdot 4^{a}+5 \cdot 3^{a+1}}{4^{2 a}-25} = \frac{3^{a+1}}{2^{2a}-5}
\]
**e)**
\[
\frac{7^{a} \cdot 49-7^{a+2} \cdot 2^{-1}}{2^{-3} \cdot 7^{a}} = 196
\]
**f)**
\[
\frac{2^{3 a-1}+\frac{3}{2}}{2^{4 a-1}+3 \cdot 2^{a-1}} = \frac{1}{2^{a}}
\]
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución