Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { c) } \frac{35^{a}-3.5^{a}}{2^{2 a} 7^{a}-3.2^{2 a}} & \text { d) } \frac{3^{a+1} \cdot 4^{a}+5.3^{a+1}}{4^{2 a}-25} \\ \text { e) } \frac{7^{a} \cdot 49-7^{a+2} \cdot 2^{-1}}{2^{-3}, 7^{a}} & \text { f) } \frac{2^{3 a-1}+\frac{3}{2}}{2^{4 a-1}+3.2^{a-1}}\end{array} \)

Ask by Lewis Donnelly. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**c)** \( \frac{5^{a}}{2^{2a}} \) **d)** \( \frac{3^{a+1}}{2^{2a}-5} \) **e)** \( 196 \) **f)** \( \frac{1}{2^{a}} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(7^{a}\times 49-7^{a+2}\times 2^{-1}\right)}{\left(2^{-3}\times 7^{a}\right)}\) - step1: Remove the parentheses: \(\frac{7^{a}\times 49-7^{a+2}\times 2^{-1}}{2^{-3}\times 7^{a}}\) - step2: Multiply the terms: \(\frac{7^{a+2}-7^{a+2}\times 2^{-1}}{2^{-3}\times 7^{a}}\) - step3: Multiply the terms: \(\frac{7^{a+2}-\frac{1}{2}\times 7^{a+2}}{2^{-3}\times 7^{a}}\) - step4: Rewrite the expression: \(\frac{7^{a+2}-\frac{1}{2}\times 7^{a+2}}{\frac{1}{8}\times 7^{a}}\) - step5: Subtract the terms: \(\frac{\frac{7^{a+2}}{2}}{\frac{1}{8}\times 7^{a}}\) - step6: Rewrite the expression: \(\frac{\frac{7^{a+2}}{2}}{\frac{7^{a}}{8}}\) - step7: Multiply by the reciprocal: \(\frac{7^{a+2}}{2}\times \frac{8}{7^{a}}\) - step8: Reduce the fraction: \(7^{2}\times 4\) - step9: Evaluate the power: \(49\times 4\) - step10: Multiply: \(196\) Calculate or simplify the expression \( (2^(3*a-1) + 3/2)/(2^(4*a-1) + 3*2^(a-1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2^{3a-1}+\frac{3}{2}\right)}{\left(2^{4a-1}+3\times 2^{a-1}\right)}\) - step1: Remove the parentheses: \(\frac{2^{3a-1}+\frac{3}{2}}{2^{4a-1}+3\times 2^{a-1}}\) - step2: Rewrite the expression: \(\frac{\frac{1}{2}\left(2^{a}\right)^{3}+\frac{3}{2}}{\frac{1}{2}\left(2^{a}\right)^{4}+\frac{3}{2}\times 2^{a}}\) - step3: Rewrite the expression: \(\frac{\frac{\left(2^{a}\right)^{3}+3}{2}}{\frac{1}{2}\left(2^{a}\right)^{4}+\frac{3}{2}\times 2^{a}}\) - step4: Rewrite the expression: \(\frac{\frac{\left(2^{a}\right)^{3}+3}{2}}{\frac{\left(2^{a}\right)^{4}+3\times 2^{a}}{2}}\) - step5: Multiply by the reciprocal: \(\frac{\left(2^{a}\right)^{3}+3}{2}\times \frac{2}{\left(2^{a}\right)^{4}+3\times 2^{a}}\) - step6: Rewrite the expression: \(\frac{\left(2^{a}\right)^{3}+3}{2}\times \frac{2}{2^{a}\left(\left(2^{a}\right)^{3}+3\right)}\) - step7: Reduce the fraction: \(1\times \frac{1}{2^{a}}\) - step8: Multiply the terms: \(\frac{1}{2^{a}}\) Calculate or simplify the expression \( (3^(a+1)*4^a + 5*3^(a+1))/(4^(2*a) - 25) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(3^{a+1}\times 4^{a}+5\times 3^{a+1}\right)}{\left(4^{2a}-25\right)}\) - step1: Remove the parentheses: \(\frac{3^{a+1}\times 4^{a}+5\times 3^{a+1}}{4^{2a}-25}\) - step2: Rewrite the expression: \(\frac{3\times 3^{a}\left(2^{a}\right)^{2}+15\times 3^{a}}{\left(2^{a}\right)^{4}-25}\) - step3: Factor the expression: \(\frac{3\times 3^{a}\left(\left(2^{a}\right)^{2}+5\right)}{\left(\left(2^{a}\right)^{2}+5\right)\left(\left(2^{a}\right)^{2}-5\right)}\) - step4: Reduce the fraction: \(\frac{3\times 3^{a}}{\left(2^{a}\right)^{2}-5}\) - step5: Calculate: \(\frac{3^{a+1}}{\left(2^{a}\right)^{2}-5}\) - step6: Calculate: \(\frac{3^{a+1}}{2^{2a}-5}\) Calculate or simplify the expression \( (35^a - 3*5^a)/(2^(2*a)*7^a - 3*2^(2*a)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(35^{a}-3\times 5^{a}\right)}{\left(2^{2a}\times 7^{a}-3\times 2^{2a}\right)}\) - step1: Remove the parentheses: \(\frac{35^{a}-3\times 5^{a}}{2^{2a}\times 7^{a}-3\times 2^{2a}}\) - step2: Multiply the terms: \(\frac{35^{a}-3\times 5^{a}}{28^{a}-3\times 2^{2a}}\) - step3: Rewrite the expression: \(\frac{5^{a}\times 7^{a}-3\times 5^{a}}{\left(2^{a}\right)^{2}\times 7^{a}-3\left(2^{a}\right)^{2}}\) - step4: Factor the expression: \(\frac{5^{a}\left(7^{a}-3\right)}{\left(2^{a}\right)^{2}\left(7^{a}-3\right)}\) - step5: Reduce the fraction: \(\frac{5^{a}}{\left(2^{a}\right)^{2}}\) - step6: Calculate: \(\frac{5^{a}}{2^{2a}}\) Here are the simplified results for each expression: **c)** \[ \frac{35^{a}-3 \cdot 5^{a}}{2^{2 a} 7^{a}-3 \cdot 2^{2 a}} = \frac{5^{a}}{2^{2a}} \] **d)** \[ \frac{3^{a+1} \cdot 4^{a}+5 \cdot 3^{a+1}}{4^{2 a}-25} = \frac{3^{a+1}}{2^{2a}-5} \] **e)** \[ \frac{7^{a} \cdot 49-7^{a+2} \cdot 2^{-1}}{2^{-3} \cdot 7^{a}} = 196 \] **f)** \[ \frac{2^{3 a-1}+\frac{3}{2}}{2^{4 a-1}+3 \cdot 2^{a-1}} = \frac{1}{2^{a}} \] If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To simplify the expression \(c)\) \(\frac{35^{a}-3.5^{a}}{2^{2 a} 7^{a}-3.2^{2 a}}\), notice that \(35^a = 5^a \cdot 7^a\) and \(5^a = (5^{\frac{1}{2}})^2 = \frac{(5^a)^2}{(5^a)^{\frac{1}{2}}}\). This opens up possibilities for factoring which helps in reducing the fraction. For item \(d)\), you have \(\frac{3^{a+1} \cdot 4^{a}+5.3^{a+1}}{4^{2 a}-25}\). The denominator can be recognized as a difference of squares: \(4^{2a} - 25 = (2^a - 5)(2^a + 5)\). Factoring the numerator could involve recognizing common terms across \(3^{a+1}\) to find common factors. Ready to dive deeper? Looking at these expressions isn't just about crunching numbers; it's about finding connections! Each simplification reflects a strategy in algebra, relying heavily on factoring and recognizing patterns. Whether for pure math or applications in physics or economics, leveraging these algebraic identities can lead to insightful solutions. Eager to decode more expressions? There’s a world of exploration in algebra waiting for you!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad