Question
upstudy study bank question image url

1.) \( f(x)=-\sqrt{x^{2}+4} \) a) \( f(-\sqrt{5}) \) b) \( f\left(\frac{1}{2}\right) \) c) \( f(0) \) d) \( f(x)=0 \) e) \( f(x)=\frac{3}{7} \)

Ask by Parsons Hart. in Mexico
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) –3 b) –(√17)/2 c) –2 d) No tiene solución e) No tiene solución

Solution

Resolvamos cada inciso: a) f(–√5):   f(–√5) = –√((–√5)² + 4)      = –√(5 + 4)      = –√9      = –3. b) f(½):   f(½) = –√((½)² + 4)     = –√(¼ + 4)     = –√(¼ + 16/4)     = –√(17/4)     = –(√17)/2. c) f(0):   f(0) = –√(0² + 4)     = –√4     = –2. d) f(x) = 0:   Planteamos la ecuación: –√(x² + 4) = 0   Despejamos: √(x² + 4) = 0   Luego: x² + 4 = 0     x² = –4   No existe ningún número real cuyo cuadrado sea –4; por lo tanto,   no hay solución real. e) f(x) = 3/7:   Planteamos: –√(x² + 4) = 3/7   Nótese que –√(x² + 4) es siempre menor o igual a –2 (ya que x² ≥ 0, de modo que √(x²+4) ≥ 2), mientras que 3/7 es un número positivo.   Por ello, no es posible que –√(x² + 4) se iguale a 3/7,   no habiendo solución real en este caso. Resumen de las respuestas: a) –3 b) –(√17)/2 c) –2 d) No tiene solución real e) No tiene solución real

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the function \( f(x) = -\sqrt{x^2 + 4} \) for the given inputs, let's go through each part step by step! a) To find \( f(-\sqrt{5}) \): \[ f(-\sqrt{5}) = -\sqrt{(-\sqrt{5})^2 + 4} = -\sqrt{5 + 4} = -\sqrt{9} = -3. \] b) To find \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = -\sqrt{(\frac{1}{2})^2 + 4} = -\sqrt{\frac{1}{4} + 4} = -\sqrt{\frac{1}{4} + \frac{16}{4}} = -\sqrt{\frac{17}{4}} = -\frac{\sqrt{17}}{2}. \] c) To find \( f(0) \): \[ f(0) = -\sqrt{0^2 + 4} = -\sqrt{4} = -2. \] d) To solve \( f(x) = 0 \): Set the equation: \[ -\sqrt{x^2 + 4} = 0. \] This means \( \sqrt{x^2 + 4} = 0 \). Squaring both sides gives \( x^2 + 4 = 0 \), which has no real solutions since \( x^2 + 4 \) is always positive. e) To solve \( f(x) = \frac{3}{7} \): Set the equation: \[ -\sqrt{x^2 + 4} = \frac{3}{7}. \] Since \(-\sqrt{x^2 + 4}\) is always negative, it cannot equal a positive value \(\frac{3}{7}\). Thus, there are no solutions. And there you have it – the outputs and equations explored step-by-step!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy