Question
upstudy study bank question image url

Use synthetic division to determine whether \( x-c \) is a factor of the given polynomial. \( 4 x^{4}-20 x^{3}-6 x+30 ; x-5 \) Is \( x-5 \) a factor of the given polynomial? No Yes

Ask by Stanley Gardner. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( x - 5 \) is a factor of the polynomial \( 4x^{4} - 20x^{3} - 6x + 30 \).

Solution

To determine whether x – 5 is a factor of the polynomial 4x⁴ – 20x³ – 6x + 30, we can use synthetic division with c = 5. Step 1. Write the coefficients of the polynomial. Note that the x² term is missing, so its coefficient is 0:   4  (x⁴), -20  (x³), 0  (x²), -6  (x), 30  (constant). Step 2. Set up the synthetic division with 5:      ________________________ 5 | 4   -20   0   -6  30 Step 3. Perform the synthetic division: 1. Bring down the first coefficient: 4. 2. Multiply 4 by 5 to get 20. Write 20 under the -20. 3. Add -20 and 20 to get 0. 4. Multiply 0 by 5 to get 0. Write 0 under the 0. 5. Add 0 and 0 to get 0. 6. Multiply 0 by 5 to get 0. Write 0 under -6. 7. Add -6 and 0 to get -6. 8. Multiply -6 by 5 to get -30. Write -30 under 30. 9. Add 30 and -30 to get 0. The complete synthetic division table should look like:          4   -20   0   -6  30 5 |             20    0   0   -30          ___________________________          4    0    0   -6   0 The remainder is 0. Step 4. Conclude that since the remainder is 0, x – 5 is a factor of the polynomial. Answer: Yes, x – 5 is a factor of 4x⁴ – 20x³ – 6x + 30.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To determine if \(x - 5\) is a factor of the polynomial \(4x^4 - 20x^3 - 6x + 30\), we can apply synthetic division. We start by using \(c = 5\) for our synthetic division. Setting up the rows of coefficients \(4, -20, 0, -6, 30\), we drop the first coefficient, multiply it by 5, and carry out the operations across the row. If the remainder is 0, then \(x - 5\) is indeed a factor. After performing the synthetic division, we find the remainder to be \(R = -30\). Since this is not zero, we conclude that \(x - 5\) is not a factor of the polynomial. In simpler terms, think of it as trying to fit a square peg (the polynomial) into a round hole (the factor \(x-5\)), and it just won't fit smoothly!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy