Pregunta
upstudy study bank question image url

Use synthetic division to determine whether \( x-c \) is a factor of the given polynomial. \( 4 x^{4}-20 x^{3}-6 x+30 ; x-5 \) Is \( x-5 \) a factor of the given polynomial? No Yes

Ask by Stanley Gardner. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x - 5 \) is a factor of the polynomial \( 4x^{4} - 20x^{3} - 6x + 30 \).

Solución

To determine whether x – 5 is a factor of the polynomial 4x⁴ – 20x³ – 6x + 30, we can use synthetic division with c = 5. Step 1. Write the coefficients of the polynomial. Note that the x² term is missing, so its coefficient is 0:   4  (x⁴), -20  (x³), 0  (x²), -6  (x), 30  (constant). Step 2. Set up the synthetic division with 5:      ________________________ 5 | 4   -20   0   -6  30 Step 3. Perform the synthetic division: 1. Bring down the first coefficient: 4. 2. Multiply 4 by 5 to get 20. Write 20 under the -20. 3. Add -20 and 20 to get 0. 4. Multiply 0 by 5 to get 0. Write 0 under the 0. 5. Add 0 and 0 to get 0. 6. Multiply 0 by 5 to get 0. Write 0 under -6. 7. Add -6 and 0 to get -6. 8. Multiply -6 by 5 to get -30. Write -30 under 30. 9. Add 30 and -30 to get 0. The complete synthetic division table should look like:          4   -20   0   -6  30 5 |             20    0   0   -30          ___________________________          4    0    0   -6   0 The remainder is 0. Step 4. Conclude that since the remainder is 0, x – 5 is a factor of the polynomial. Answer: Yes, x – 5 is a factor of 4x⁴ – 20x³ – 6x + 30.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if \(x - 5\) is a factor of the polynomial \(4x^4 - 20x^3 - 6x + 30\), we can apply synthetic division. We start by using \(c = 5\) for our synthetic division. Setting up the rows of coefficients \(4, -20, 0, -6, 30\), we drop the first coefficient, multiply it by 5, and carry out the operations across the row. If the remainder is 0, then \(x - 5\) is indeed a factor. After performing the synthetic division, we find the remainder to be \(R = -30\). Since this is not zero, we conclude that \(x - 5\) is not a factor of the polynomial. In simpler terms, think of it as trying to fit a square peg (the polynomial) into a round hole (the factor \(x-5\)), and it just won't fit smoothly!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad