Question
upstudy study bank question image url

Prove that a finite dimensional vector space V has dimension n if and only if n is the maximum number of linearly independent vectors in any subset of V . सिद्ध कीजिए कि एक परिमित आयामी सदिश समष्टि V का आयाम \( n \) है यदि और केवल यदि \( n, \mathrm{~V} \) के किसी उपसमुच्चय में रैखिक रूप से स्वतंत्र सदिशों की अधिकतम संख्या है।

Ask by Lindsey Mcguire. in India
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

A finite-dimensional vector space \( V \) has dimension \( n \) if and only if \( n \) is the maximum number of linearly independent vectors in any subset of \( V \).

Solution

To prove that a finite-dimensional vector space \( V \) has dimension \( n \) if and only if \( n \) is the maximum number of linearly independent vectors in any subset of \( V \), we will establish both implications: 1. **If \( V \) has dimension \( n \), then no subset of \( V \) contains more than \( n \) linearly independent vectors.** 2. **If the maximum number of linearly independent vectors in any subset of \( V \) is \( n \), then the dimension of \( V \) is \( n \).** Let's proceed with each part of the proof. --- ### Part 1: Dimension \( n \) Implies Maximum of \( n \) Linearly Independent Vectors **Assumption:** \( V \) is a finite-dimensional vector space with dimension \( n \). This means there exists a basis for \( V \) consisting of exactly \( n \) vectors. **To Prove:** Any linearly independent subset of \( V \) contains at most \( n \) vectors. **Proof:** 1. Let \( \{v_1, v_2, \dots, v_k\} \) be a linearly independent subset of \( V \). 2. Consider extending this subset to a basis for \( V \). Since \( V \) has dimension \( n \), any basis of \( V \) has exactly \( n \) vectors. 3. Since \( \{v_1, v_2, \dots, v_k\} \) is linearly independent, it can be extended to a basis by adding \( n - k \) additional vectors, assuming \( k \leq n \). 4. If \( k > n \), then having more than \( n \) linearly independent vectors would contradict the fact that the maximum size of a basis is \( n \). 5. Therefore, \( k \leq n \). Hence, any linearly independent subset of \( V \) contains at most \( n \) vectors. --- ### Part 2: Maximum of \( n \) Linearly Independent Vectors Implies Dimension \( n \) **Assumption:** In the vector space \( V \), the maximum number of linearly independent vectors in any subset is \( n \). **To Prove:** The dimension of \( V \) is \( n \). **Proof:** 1. Since there exists a subset of \( V \) with \( n \) linearly independent vectors (by the assumption that the maximum number is \( n \)), let \( \{v_1, v_2, \dots, v_n\} \) be such a set. 2. We need to show that this set is a basis for \( V \), i.e., that it spans \( V \). 3. Suppose, for contradiction, that \( \{v_1, v_2, \dots, v_n\} \) does not span \( V \). Then, there exists a vector \( v_{n+1} \in V \) that is not in the span of \( \{v_1, v_2, \dots, v_n\} \). 4. This implies that \( \{v_1, v_2, \dots, v_n, v_{n+1}\} \) is a linearly independent set with \( n + 1 \) vectors. 5. However, this contradicts the assumption that the maximum number of linearly independent vectors in any subset of \( V \) is \( n \). 6. Therefore, our assumption is false, and \( \{v_1, v_2, \dots, v_n\} \) must span \( V \). 7. Since the set is both linearly independent and spans \( V \), it is a basis for \( V \). 8. Hence, the dimension of \( V \) is \( n \). --- ### Conclusion We have shown both directions: - If \( V \) has dimension \( n \), then no subset of \( V \) contains more than \( n \) linearly independent vectors. - If no subset of \( V \) contains more than \( n \) linearly independent vectors, then the dimension of \( V \) is \( n \). Therefore, a finite-dimensional vector space \( V \) has dimension \( n \) if and only if \( n \) is the maximum number of linearly independent vectors in any subset of \( V \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

सिद्धांत की शुरुआत इस बात से होती है कि यदि \( V \) का आयाम \( n \) है, तो \( V \) में \( n \) रैखिक रूप से स्वतंत्र सदिश हैं और इससे अधिक रैखिक स्वतंत्र सदिश नहीं हो सकते। अगर हम \( V \) के किसी उपसमुच्चय को लें जिसमें \( n \) से अधिक सदिश हैं, तो ये सदिश अवश्य रैखिक रूप से निर्भर होंगे। इसी प्रकार, यदि \( V \) में रैखिक रूप से स्वतंत्र सदिशों की अधिकतम संख्या \( n \) है, तो \( V \) का आयाम भी \( n \) होगा। यह दोनों दिशा में सिद्ध होता है। अब विचार करें कि यदि \( V \) का आयाम \( n \) है, तो एक आधार में \( n \) रैखिक रूप से स्वतंत्र सदिश होते हैं। ये \( V \) के किसी भी उपसमुच्चय में अधिकतम रैखिक स्वतंत्र सदिश हैं। यदि हम कोई और सदिश जोड़ते हैं, तो वे स्वाभाविक रूप से निर्भर होंगे। इस प्रकार, हम पाएंगे कि \( n \) रैखिक रूप से स्वतंत्र सदिश, \( V \) के लिए अधिकतम है।

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy