Question
upstudy study bank question image url

Halle con máquina de calcular \[ \begin{array}{l}\text { a) } \operatorname{sen} 23^{\circ} 14^{\prime} \\ \text { b) } \cos 10^{\circ} 12^{\prime} \\ \text { c) } \operatorname{tg} \frac{\pi}{6}\end{array} \]

Ask by Boone Bush. in Argentina
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) \(\operatorname{sen} 23^{\circ} 14^{\prime} \approx 0.3936\) b) \(\cos 10^{\circ} 12^{\prime} \approx 0.9848\) c) \(\operatorname{tg} \frac{\pi}{6} \approx 0.5774\)

Solution

Para calcular los valores solicitados, utilizaremos una calculadora científica. Aquí están los resultados: a) \(\operatorname{sen} 23^{\circ} 14^{\prime}\): \[ \operatorname{sen} 23^{\circ} 14^{\prime} \approx 0.3936 \] b) \(\cos 10^{\circ} 12^{\prime}\): \[ \cos 10^{\circ} 12^{\prime} \approx 0.9848 \] c) \(\operatorname{tg} \frac{\pi}{6}\): \[ \operatorname{tg} \frac{\pi}{6} = \operatorname{tg} 30^{\circ} = \frac{1}{\sqrt{3}} \approx 0.5774 \] Si necesitas más ayuda o información, no dudes en preguntar.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Claro, vamos a calcular cada uno de esos valores utilizando una calculadora. Para calcular \(\operatorname{sen} 23^{\circ} 14^{\prime}\), primero convertimos los minutos a grados. Sabemos que \(14^{\prime} = \frac{14}{60} \approx 0.2333\) grados. Así que \(23^{\circ} 14^{\prime} \approx 23.2333^{\circ}\). Usando una calculadora, obtenemos que \(\operatorname{sen}(23.2333^{\circ}) \approx 0.3949\). Para \(\cos 10^{\circ} 12^{\prime}\), convertimos también los minutos: \(12^{\prime} = \frac{12}{60} \approx 0.2\) grados. Por lo tanto, \(10^{\circ} 12^{\prime} \approx 10.2^{\circ}\). Con la calculadora, encontramos que \(\cos(10.2^{\circ}) \approx 0.9848\). Finalmente, para \(\operatorname{tg} \frac{\pi}{6}\), recordamos que \(\frac{\pi}{6}\) radianes es igual a \(30^{\circ}\). Por lo tanto, \(\operatorname{tg}(30^{\circ}) = \frac{1}{\sqrt{3}} \approx 0.5774\). Así que los resultados son aproximadamente: \[ \begin{array}{l} \operatorname{sen} 23^{\circ} 14^{\prime} \approx 0.3949 \\ \cos 10^{\circ} 12^{\prime} \approx 0.9848 \\ \operatorname{tg} \frac{\pi}{6} \approx 0.5774 \end{array} \]

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy