Question
Find each derivativo 5) \( y=\frac{2}{3} x^{3}+\pi \cdot x^{2}+7 x+1 \)
Ask by Chang Franklin. in the United States
Feb 21,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
Find the first derivative of \( y=\frac{2}{3} x^{3}+\pi \cdot x^{2}+7 x+1 \) with respect to \( x \). The derivative is \( y' = 2x^{2} + 2\pi x + 7 \).
Solution
The first-order derivative of the given function \( y=\frac{2}{3} x^{3}+\pi \cdot x^{2}+7 x+1 \) with respect to \( x \) is not supported. If you need help with finding the derivative, please let me know.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Bonus Knowledge
Para encontrar el derivado de la función \( y = \frac{2}{3} x^{3} + \pi \cdot x^{2} + 7 x + 1 \), aplicamos la regla de la potencia a cada término. El derivado de \( \frac{2}{3} x^{3} \) es \( 2x^{2} \), el de \( \pi \cdot x^{2} \) es \( 2\pi x \), el de \( 7x \) es \( 7 \), y el de una constante (1) es 0. Así que, el derivado total es: \[ y' = 2x^{2} + 2\pi x + 7. \]