Question
upstudy study bank question image url

Algebra I Factoring GCF \& Grouping Factor the following polynomials by GCF and/or groupin 1.) \( 5 x^{3}-6 x^{2}-5 x+6 \) 2.) \( 6 x^{3}+12 x^{2}+6 x \) 3.) \( x^{6}-x^{5}+x^{4}-x^{3} \) 4.) \( 10 x^{3}+15 x^{2}+20 x+30 \) 5.) \( 100 x^{7}-25 x^{5} \) 6.) \( 11 \mathrm{x}^{2}+44 x+33 \) 7.) \( 12 x^{5}-3 x^{3} \) 8.) \( -13 x^{15}-13 x^{12} \) 9.) \( 15 \mathrm{x}^{3}+2 x^{2}-x \) 10.) \( 16 x^{3}+56 x^{2}-18 x-63 \) 11.) \( 2 \mathrm{x}^{3}+3 x^{2}-18 x-27 \) 12.) \( -2 \mathrm{x}^{3}+54 \) 13.) \( 200 x^{2}-50 \) 14.) \( 24 x^{3}+4 x^{2}-54 x-9 \) 15.) \( 24 x^{3}-16 x^{2}-15 x+10 \)

Ask by Wood Bowen. in the United States
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the factored forms of the given polynomials: 1. \( 5x^{3} - 6x^{2} - 5x + 6 = (x - 1)(x + 1)(5x - 6) \) 2. \( 6x^{3} + 12x^{2} + 6x = 6x(x + 1)^2 \) 3. \( x^{6} - x^{5} + x^{4} - x^{3} = x^{3}(x - 1)(x^{2} + 1) \) 4. \( 10x^{3} + 15x^{2} + 20x + 30 = 5(2x + 3)(x^{2} + 2) \) 5. \( 100x^{7} - 25x^{5} = 25x^{5}(4x^{2} - 1) = 25x^{5}(2x - 1)(2x + 1) \) 6. \( 11x^{2} + 44x + 33 = 11(x + 1)(x + 3) \) 7. \( 12x^{5} - 3x^{3} = 3x^{3}(4x^{2} - 1) = 3x^{3}(2x - 1)(2x + 1) \) 8. \( -13x^{15} - 13x^{12} = -13x^{12}(x + 1)(x^{2} - x + 1) \) 9. \( 15x^{3} + 2x^{2} - x = x(3x + 1)(5x - 1) \) 10. \( 16x^{3} + 56x^{2} - 18x - 63 = (2x + 7)(8x^{2} - 9) \) 11. \( 2x^{3} + 3x^{2} - 18x - 27 = (x - 3)(x + 3)(2x + 3) \) 12. \( -2x^{3} + 54 = 2(3 - x)(9 + 3x + x^{2}) \) 13. \( 200x^{2} - 50 = 50(2x - 1)(2x + 1) \) 14. \( 24x^{3} + 4x^{2} - 54x - 9 = (2x - 3)(2x + 3)(6x + 1) \) 15. \( 24x^{3} - 16x^{2} - 15x + 10 = (3x - 2)(8x^{2} - 5) \) These factorizations use the greatest common factor (GCF) and grouping methods where applicable.

Solution

Factor the expression by following steps: - step0: Factor: \(12x^{5}-3x^{3}\) - step1: Factor the expression: \(3x^{3}\left(4x^{2}-1\right)\) - step2: Factor the expression: \(3x^{3}\left(2x-1\right)\left(2x+1\right)\) Factor the expression \( 2 x^{3}+3 x^{2}-18 x-27 \). Factor the expression by following steps: - step0: Factor: \(2x^{3}+3x^{2}-18x-27\) - step1: Rewrite the expression: \(x^{2}\times 2x+x^{2}\times 3-9\times 2x-9\times 3\) - step2: Factor the expression: \(x^{2}\left(2x+3\right)-9\left(2x+3\right)\) - step3: Factor the expression: \(\left(x^{2}-9\right)\left(2x+3\right)\) - step4: Factor the expression: \(\left(x-3\right)\left(x+3\right)\left(2x+3\right)\) Factor the expression \( 24 x^{3}-16 x^{2}-15 x+10 \). Factor the expression by following steps: - step0: Factor: \(24x^{3}-16x^{2}-15x+10\) - step1: Calculate: \(24x^{3}-15x-16x^{2}+10\) - step2: Rewrite the expression: \(3x\times 8x^{2}-3x\times 5-2\times 8x^{2}+2\times 5\) - step3: Factor the expression: \(3x\left(8x^{2}-5\right)-2\left(8x^{2}-5\right)\) - step4: Factor the expression: \(\left(3x-2\right)\left(8x^{2}-5\right)\) Factor the expression \( 15 x^{3}+2 x^{2}-x \). Factor the expression by following steps: - step0: Factor: \(15x^{3}+2x^{2}-x\) - step1: Rewrite the expression: \(x\times 15x^{2}+x\times 2x-x\) - step2: Factor the expression: \(x\left(15x^{2}+2x-1\right)\) - step3: Factor the expression: \(x\left(3x+1\right)\left(5x-1\right)\) Factor the expression \( 200 x^{2}-50 \). Factor the expression by following steps: - step0: Factor: \(200x^{2}-50\) - step1: Factor the expression: \(50\left(4x^{2}-1\right)\) - step2: Factor the expression: \(50\left(2x-1\right)\left(2x+1\right)\) Factor the expression \( -13 x^{15}-13 x^{12 \). Factor the expression by following steps: - step0: Factor: \(-13x^{15}-13x^{12}\) - step1: Factor the expression: \(-13x^{12}\left(x^{3}+1\right)\) - step2: Factor the expression: \(-13x^{12}\left(x+1\right)\left(x^{2}-x+1\right)\) Factor the expression \( -2 x^{3}+54 \). Factor the expression by following steps: - step0: Factor: \(-2x^{3}+54\) - step1: Factor the expression: \(2\left(-x^{3}+27\right)\) - step2: Factor the expression: \(2\left(3-x\right)\left(9+3x+x^{2}\right)\) Factor the expression \( 24 x^{3}+4 x^{2}-54 x-9 \). Factor the expression by following steps: - step0: Factor: \(24x^{3}+4x^{2}-54x-9\) - step1: Rewrite the expression: \(4x^{2}\times 6x+4x^{2}-9\times 6x-9\) - step2: Factor the expression: \(4x^{2}\left(6x+1\right)-9\left(6x+1\right)\) - step3: Factor the expression: \(\left(4x^{2}-9\right)\left(6x+1\right)\) - step4: Factor the expression: \(\left(2x-3\right)\left(2x+3\right)\left(6x+1\right)\) Factor the expression \( 16 x^{3}+56 x^{2}-18 x-63 \). Factor the expression by following steps: - step0: Factor: \(16x^{3}+56x^{2}-18x-63\) - step1: Calculate: \(16x^{3}-18x+56x^{2}-63\) - step2: Rewrite the expression: \(2x\times 8x^{2}-2x\times 9+7\times 8x^{2}-7\times 9\) - step3: Factor the expression: \(2x\left(8x^{2}-9\right)+7\left(8x^{2}-9\right)\) - step4: Factor the expression: \(\left(2x+7\right)\left(8x^{2}-9\right)\) Factor the expression \( x^{6}-x^{5}+x^{4}-x^{3 \). Factor the expression by following steps: - step0: Factor: \(x^{6}-x^{5}+x^{4}-x^{3}\) - step1: Evaluate: \(x^{6}+x^{4}-x^{5}-x^{3}\) - step2: Rewrite the expression: \(x^{3}\times x^{3}+x^{3}\times x-x^{3}\times x^{2}-x^{3}\) - step3: Factor the expression: \(x^{3}\left(x^{3}+x-x^{2}-1\right)\) - step4: Factor the expression: \(x^{3}\left(x-1\right)\left(x^{2}+1\right)\) Factor the expression \( 6 x^{3}+12 x^{2}+6 x \). Factor the expression by following steps: - step0: Factor: \(6x^{3}+12x^{2}+6x\) - step1: Rewrite the expression: \(6x\times x^{2}+6x\times 2x+6x\) - step2: Factor the expression: \(6x\left(x^{2}+2x+1\right)\) - step3: Factor the expression: \(6x\left(x+1\right)^{2}\) Factor the expression \( 5 x^{3}-6 x^{2}-5 x+6 \). Factor the expression by following steps: - step0: Factor: \(5x^{3}-6x^{2}-5x+6\) - step1: Rewrite the expression: \(x^{2}\times 5x-x^{2}\times 6-5x+6\) - step2: Factor the expression: \(x^{2}\left(5x-6\right)-\left(5x-6\right)\) - step3: Factor the expression: \(\left(x^{2}-1\right)\left(5x-6\right)\) - step4: Factor the expression: \(\left(x-1\right)\left(x+1\right)\left(5x-6\right)\) Factor the expression \( 100 x^{7}-25 x^{5} \). Factor the expression by following steps: - step0: Factor: \(100x^{7}-25x^{5}\) - step1: Factor the expression: \(25x^{5}\left(4x^{2}-1\right)\) - step2: Factor the expression: \(25x^{5}\left(2x-1\right)\left(2x+1\right)\) Factor the expression \( 10 x^{3}+15 x^{2}+20 x+30 \). Factor the expression by following steps: - step0: Factor: \(10x^{3}+15x^{2}+20x+30\) - step1: Evaluate: \(10x^{3}+20x+15x^{2}+30\) - step2: Rewrite the expression: \(5\times 2x^{3}+5\times 4x+5\times 3x^{2}+5\times 6\) - step3: Factor the expression: \(5\left(2x^{3}+4x+3x^{2}+6\right)\) - step4: Factor the expression: \(5\left(2x+3\right)\left(x^{2}+2\right)\) Factor the expression \( 11 x^{2}+44 x+33 \). Factor the expression by following steps: - step0: Factor: \(11x^{2}+44x+33\) - step1: Rewrite the expression: \(11x^{2}+11\times 4x+11\times 3\) - step2: Factor the expression: \(11\left(x^{2}+4x+3\right)\) - step3: Factor the expression: \(11\left(x+1\right)\left(x+3\right)\) Here are the factored forms of the given polynomials using GCF and/or grouping: 1. **\( 5 x^{3}-6 x^{2}-5 x+6 \)** Factored form: \((x-1)(x+1)(5x-6)\) 2. **\( 6 x^{3}+12 x^{2}+6 x \)** Factored form: \(6x(x+1)^{2}\) 3. **\( x^{6}-x^{5}+x^{4}-x^{3} \)** Factored form: \(x^{3}(x-1)(x^{2}+1)\) 4. **\( 10 x^{3}+15 x^{2}+20 x+30 \)** Factored form: \(5(2x+3)(x^{2}+2)\) 5. **\( 100 x^{7}-25 x^{5} \)** Factored form: \(25x^{5}(4x^{2}-1)\) or \(25x^{5}(2x-1)(2x+1)\) 6. **\( 11 x^{2}+44 x+33 \)** Factored form: \(11(x+1)(x+3)\) 7. **\( 12 x^{5}-3 x^{3} \)** Factored form: \(3x^{3}(4x^{2}-1)\) or \(3x^{3}(2x-1)(2x+1)\) 8. **\( -13 x^{15}-13 x^{12} \)** Factored form: \(-13x^{12}(x+1)(x^{2}-x+1)\) 9. **\( 15 x^{3}+2 x^{2}-x \)** Factored form: \(x(3x+1)(5x-1)\) 10. **\( 16 x^{3}+56 x^{2}-18 x-63 \)** Factored form: \((2x+7)(8x^{2}-9)\) 11. **\( 2 x^{3}+3 x^{2}-18 x-27 \)** Factored form: \((x-3)(x+3)(2x+3)\) 12. **\( -2 x^{3}+54 \)** Factored form: \(2(3-x)(9+3x+x^{2})\) 13. **\( 200 x^{2}-50 \)** Factored form: \(50(2x-1)(2x+1)\) 14. **\( 24 x^{3}+4 x^{2}-54 x-9 \)** Factored form: \((2x-3)(2x+3)(6x+1)\) 15. **\( 24 x^{3}-16 x^{2}-15 x+10 \)** Factored form: \((3x-2)(8x^{2}-5)\) These factorizations utilize the greatest common factor (GCF) and grouping methods where applicable.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Factorization has a rich history dating back to ancient civilizations, where scholars like the Babylonians and Greeks developed methods to solve polynomial equations. They laid the groundwork for the techniques we use today! Over the centuries, mathematicians such as Al-Khwarizmi and Descartes made significant contributions, leading to the formalization of algebra that allows us to manipulate and understand polynomials, setting the stage for modern algebra. In real-world applications, factoring polynomials is essential in fields like engineering and physics. For instance, in quadratic equations, finding roots can help determine projectile motion or optimize structures. Additionally, computer algorithms often use polynomial factorization for efficient calculations, especially in cryptography! So, the next time you're factoring, remember, you're harnessing a skill that has practical implications beyond just classwork!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy