Answer
Here are the factored forms of the given polynomials:
1. \( 5x^{3} - 6x^{2} - 5x + 6 = (x - 1)(x + 1)(5x - 6) \)
2. \( 6x^{3} + 12x^{2} + 6x = 6x(x + 1)^2 \)
3. \( x^{6} - x^{5} + x^{4} - x^{3} = x^{3}(x - 1)(x^{2} + 1) \)
4. \( 10x^{3} + 15x^{2} + 20x + 30 = 5(2x + 3)(x^{2} + 2) \)
5. \( 100x^{7} - 25x^{5} = 25x^{5}(4x^{2} - 1) = 25x^{5}(2x - 1)(2x + 1) \)
6. \( 11x^{2} + 44x + 33 = 11(x + 1)(x + 3) \)
7. \( 12x^{5} - 3x^{3} = 3x^{3}(4x^{2} - 1) = 3x^{3}(2x - 1)(2x + 1) \)
8. \( -13x^{15} - 13x^{12} = -13x^{12}(x + 1)(x^{2} - x + 1) \)
9. \( 15x^{3} + 2x^{2} - x = x(3x + 1)(5x - 1) \)
10. \( 16x^{3} + 56x^{2} - 18x - 63 = (2x + 7)(8x^{2} - 9) \)
11. \( 2x^{3} + 3x^{2} - 18x - 27 = (x - 3)(x + 3)(2x + 3) \)
12. \( -2x^{3} + 54 = 2(3 - x)(9 + 3x + x^{2}) \)
13. \( 200x^{2} - 50 = 50(2x - 1)(2x + 1) \)
14. \( 24x^{3} + 4x^{2} - 54x - 9 = (2x - 3)(2x + 3)(6x + 1) \)
15. \( 24x^{3} - 16x^{2} - 15x + 10 = (3x - 2)(8x^{2} - 5) \)
These factorizations use the greatest common factor (GCF) and grouping methods where applicable.
Solution
Factor the expression by following steps:
- step0: Factor:
\(12x^{5}-3x^{3}\)
- step1: Factor the expression:
\(3x^{3}\left(4x^{2}-1\right)\)
- step2: Factor the expression:
\(3x^{3}\left(2x-1\right)\left(2x+1\right)\)
Factor the expression \( 2 x^{3}+3 x^{2}-18 x-27 \).
Factor the expression by following steps:
- step0: Factor:
\(2x^{3}+3x^{2}-18x-27\)
- step1: Rewrite the expression:
\(x^{2}\times 2x+x^{2}\times 3-9\times 2x-9\times 3\)
- step2: Factor the expression:
\(x^{2}\left(2x+3\right)-9\left(2x+3\right)\)
- step3: Factor the expression:
\(\left(x^{2}-9\right)\left(2x+3\right)\)
- step4: Factor the expression:
\(\left(x-3\right)\left(x+3\right)\left(2x+3\right)\)
Factor the expression \( 24 x^{3}-16 x^{2}-15 x+10 \).
Factor the expression by following steps:
- step0: Factor:
\(24x^{3}-16x^{2}-15x+10\)
- step1: Calculate:
\(24x^{3}-15x-16x^{2}+10\)
- step2: Rewrite the expression:
\(3x\times 8x^{2}-3x\times 5-2\times 8x^{2}+2\times 5\)
- step3: Factor the expression:
\(3x\left(8x^{2}-5\right)-2\left(8x^{2}-5\right)\)
- step4: Factor the expression:
\(\left(3x-2\right)\left(8x^{2}-5\right)\)
Factor the expression \( 15 x^{3}+2 x^{2}-x \).
Factor the expression by following steps:
- step0: Factor:
\(15x^{3}+2x^{2}-x\)
- step1: Rewrite the expression:
\(x\times 15x^{2}+x\times 2x-x\)
- step2: Factor the expression:
\(x\left(15x^{2}+2x-1\right)\)
- step3: Factor the expression:
\(x\left(3x+1\right)\left(5x-1\right)\)
Factor the expression \( 200 x^{2}-50 \).
Factor the expression by following steps:
- step0: Factor:
\(200x^{2}-50\)
- step1: Factor the expression:
\(50\left(4x^{2}-1\right)\)
- step2: Factor the expression:
\(50\left(2x-1\right)\left(2x+1\right)\)
Factor the expression \( -13 x^{15}-13 x^{12 \).
Factor the expression by following steps:
- step0: Factor:
\(-13x^{15}-13x^{12}\)
- step1: Factor the expression:
\(-13x^{12}\left(x^{3}+1\right)\)
- step2: Factor the expression:
\(-13x^{12}\left(x+1\right)\left(x^{2}-x+1\right)\)
Factor the expression \( -2 x^{3}+54 \).
Factor the expression by following steps:
- step0: Factor:
\(-2x^{3}+54\)
- step1: Factor the expression:
\(2\left(-x^{3}+27\right)\)
- step2: Factor the expression:
\(2\left(3-x\right)\left(9+3x+x^{2}\right)\)
Factor the expression \( 24 x^{3}+4 x^{2}-54 x-9 \).
Factor the expression by following steps:
- step0: Factor:
\(24x^{3}+4x^{2}-54x-9\)
- step1: Rewrite the expression:
\(4x^{2}\times 6x+4x^{2}-9\times 6x-9\)
- step2: Factor the expression:
\(4x^{2}\left(6x+1\right)-9\left(6x+1\right)\)
- step3: Factor the expression:
\(\left(4x^{2}-9\right)\left(6x+1\right)\)
- step4: Factor the expression:
\(\left(2x-3\right)\left(2x+3\right)\left(6x+1\right)\)
Factor the expression \( 16 x^{3}+56 x^{2}-18 x-63 \).
Factor the expression by following steps:
- step0: Factor:
\(16x^{3}+56x^{2}-18x-63\)
- step1: Calculate:
\(16x^{3}-18x+56x^{2}-63\)
- step2: Rewrite the expression:
\(2x\times 8x^{2}-2x\times 9+7\times 8x^{2}-7\times 9\)
- step3: Factor the expression:
\(2x\left(8x^{2}-9\right)+7\left(8x^{2}-9\right)\)
- step4: Factor the expression:
\(\left(2x+7\right)\left(8x^{2}-9\right)\)
Factor the expression \( x^{6}-x^{5}+x^{4}-x^{3 \).
Factor the expression by following steps:
- step0: Factor:
\(x^{6}-x^{5}+x^{4}-x^{3}\)
- step1: Evaluate:
\(x^{6}+x^{4}-x^{5}-x^{3}\)
- step2: Rewrite the expression:
\(x^{3}\times x^{3}+x^{3}\times x-x^{3}\times x^{2}-x^{3}\)
- step3: Factor the expression:
\(x^{3}\left(x^{3}+x-x^{2}-1\right)\)
- step4: Factor the expression:
\(x^{3}\left(x-1\right)\left(x^{2}+1\right)\)
Factor the expression \( 6 x^{3}+12 x^{2}+6 x \).
Factor the expression by following steps:
- step0: Factor:
\(6x^{3}+12x^{2}+6x\)
- step1: Rewrite the expression:
\(6x\times x^{2}+6x\times 2x+6x\)
- step2: Factor the expression:
\(6x\left(x^{2}+2x+1\right)\)
- step3: Factor the expression:
\(6x\left(x+1\right)^{2}\)
Factor the expression \( 5 x^{3}-6 x^{2}-5 x+6 \).
Factor the expression by following steps:
- step0: Factor:
\(5x^{3}-6x^{2}-5x+6\)
- step1: Rewrite the expression:
\(x^{2}\times 5x-x^{2}\times 6-5x+6\)
- step2: Factor the expression:
\(x^{2}\left(5x-6\right)-\left(5x-6\right)\)
- step3: Factor the expression:
\(\left(x^{2}-1\right)\left(5x-6\right)\)
- step4: Factor the expression:
\(\left(x-1\right)\left(x+1\right)\left(5x-6\right)\)
Factor the expression \( 100 x^{7}-25 x^{5} \).
Factor the expression by following steps:
- step0: Factor:
\(100x^{7}-25x^{5}\)
- step1: Factor the expression:
\(25x^{5}\left(4x^{2}-1\right)\)
- step2: Factor the expression:
\(25x^{5}\left(2x-1\right)\left(2x+1\right)\)
Factor the expression \( 10 x^{3}+15 x^{2}+20 x+30 \).
Factor the expression by following steps:
- step0: Factor:
\(10x^{3}+15x^{2}+20x+30\)
- step1: Evaluate:
\(10x^{3}+20x+15x^{2}+30\)
- step2: Rewrite the expression:
\(5\times 2x^{3}+5\times 4x+5\times 3x^{2}+5\times 6\)
- step3: Factor the expression:
\(5\left(2x^{3}+4x+3x^{2}+6\right)\)
- step4: Factor the expression:
\(5\left(2x+3\right)\left(x^{2}+2\right)\)
Factor the expression \( 11 x^{2}+44 x+33 \).
Factor the expression by following steps:
- step0: Factor:
\(11x^{2}+44x+33\)
- step1: Rewrite the expression:
\(11x^{2}+11\times 4x+11\times 3\)
- step2: Factor the expression:
\(11\left(x^{2}+4x+3\right)\)
- step3: Factor the expression:
\(11\left(x+1\right)\left(x+3\right)\)
Here are the factored forms of the given polynomials using GCF and/or grouping:
1. **\( 5 x^{3}-6 x^{2}-5 x+6 \)**
Factored form: \((x-1)(x+1)(5x-6)\)
2. **\( 6 x^{3}+12 x^{2}+6 x \)**
Factored form: \(6x(x+1)^{2}\)
3. **\( x^{6}-x^{5}+x^{4}-x^{3} \)**
Factored form: \(x^{3}(x-1)(x^{2}+1)\)
4. **\( 10 x^{3}+15 x^{2}+20 x+30 \)**
Factored form: \(5(2x+3)(x^{2}+2)\)
5. **\( 100 x^{7}-25 x^{5} \)**
Factored form: \(25x^{5}(4x^{2}-1)\) or \(25x^{5}(2x-1)(2x+1)\)
6. **\( 11 x^{2}+44 x+33 \)**
Factored form: \(11(x+1)(x+3)\)
7. **\( 12 x^{5}-3 x^{3} \)**
Factored form: \(3x^{3}(4x^{2}-1)\) or \(3x^{3}(2x-1)(2x+1)\)
8. **\( -13 x^{15}-13 x^{12} \)**
Factored form: \(-13x^{12}(x+1)(x^{2}-x+1)\)
9. **\( 15 x^{3}+2 x^{2}-x \)**
Factored form: \(x(3x+1)(5x-1)\)
10. **\( 16 x^{3}+56 x^{2}-18 x-63 \)**
Factored form: \((2x+7)(8x^{2}-9)\)
11. **\( 2 x^{3}+3 x^{2}-18 x-27 \)**
Factored form: \((x-3)(x+3)(2x+3)\)
12. **\( -2 x^{3}+54 \)**
Factored form: \(2(3-x)(9+3x+x^{2})\)
13. **\( 200 x^{2}-50 \)**
Factored form: \(50(2x-1)(2x+1)\)
14. **\( 24 x^{3}+4 x^{2}-54 x-9 \)**
Factored form: \((2x-3)(2x+3)(6x+1)\)
15. **\( 24 x^{3}-16 x^{2}-15 x+10 \)**
Factored form: \((3x-2)(8x^{2}-5)\)
These factorizations utilize the greatest common factor (GCF) and grouping methods where applicable.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution