Question
upstudy study bank question image url

\( \begin{array}{lll}\text { g) } \frac{-6}{x+2}-\frac{-x+3}{x}+\frac{x-1}{3 x} & \text { h) } & \frac{x^{2}+7 x}{x^{2}-4}+\frac{x-3}{2-x}-\frac{5}{x+2} \\ \text { i) } \frac{x}{x-1}+\frac{x+3}{x+1}-\frac{4}{1-x^{2}} & \text { j) } & \frac{a}{a x+a}-\frac{x-2}{x+1}+\frac{x+2}{x-1}\end{array} \)

Ask by West Bush. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**g)** \[ \frac{-6}{x+2} - \frac{-x + 3}{x} + \frac{x - 1}{3x} = \frac{-20x + 4x^{2} - 20}{3x^{2} + 6x} \] **h)** \[ \frac{x^{2} + 7x}{x^{2} - 4} + \frac{x - 3}{2 - x} - \frac{5}{x + 2} = \frac{3x + 16}{x^{2} - 4} \] **i)** \[ \frac{x}{x - 1} + \frac{x + 3}{x + 1} - \frac{4}{1 - x^{2}} = \frac{2x + 1}{x - 1} \] **j)** \[ \frac{a}{ax + a} - \frac{x - 2}{x + 1} + \frac{x + 2}{x - 1} = \frac{7x - 1}{x^{2} - 1} \]

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x-1\right)}+\frac{\left(x+3\right)}{\left(x+1\right)}-\frac{4}{\left(1-x^{2}\right)}\) - step1: Remove the parentheses: \(\frac{x}{x-1}+\frac{x+3}{x+1}-\frac{4}{1-x^{2}}\) - step2: Rewrite the fractions: \(\frac{x}{x-1}+\frac{x+3}{x+1}+\frac{4}{-1+x^{2}}\) - step3: Factor the expression: \(\frac{x}{x-1}+\frac{x+3}{x+1}+\frac{4}{\left(x+1\right)\left(x-1\right)}\) - step4: Reduce fractions to a common denominator: \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\) - step5: Rewrite the expression: \(\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\) - step6: Transform the expression: \(\frac{x\left(x+1\right)+\left(x+3\right)\left(x-1\right)+4}{\left(x+1\right)\left(x-1\right)}\) - step7: Multiply the terms: \(\frac{x^{2}+x+\left(x+3\right)\left(x-1\right)+4}{\left(x+1\right)\left(x-1\right)}\) - step8: Multiply the terms: \(\frac{x^{2}+x+x^{2}+2x-3+4}{\left(x+1\right)\left(x-1\right)}\) - step9: Calculate: \(\frac{2x^{2}+3x+1}{\left(x+1\right)\left(x-1\right)}\) - step10: Factor the expression: \(\frac{\left(x+1\right)\left(2x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step11: Reduce the fraction: \(\frac{2x+1}{x-1}\) Calculate or simplify the expression \( a/(a*x + a) - (x - 2)/(x + 1) + (x + 2)/(x - 1) \). Simplify the expression by following steps: - step0: Solution: \(\frac{a}{\left(ax+a\right)}-\frac{\left(x-2\right)}{\left(x+1\right)}+\frac{\left(x+2\right)}{\left(x-1\right)}\) - step1: Remove the parentheses: \(\frac{a}{ax+a}-\frac{x-2}{x+1}+\frac{x+2}{x-1}\) - step2: Divide the terms: \(\frac{1}{x+1}-\frac{x-2}{x+1}+\frac{x+2}{x-1}\) - step3: Reduce fractions to a common denominator: \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\) - step4: Rewrite the expression: \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step5: Transform the expression: \(\frac{x-1-\left(x-2\right)\left(x-1\right)+\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step6: Multiply the terms: \(\frac{x-1-\left(x^{2}-3x+2\right)+\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - step7: Multiply the terms: \(\frac{x-1-\left(x^{2}-3x+2\right)+x^{2}+3x+2}{\left(x+1\right)\left(x-1\right)}\) - step8: Calculate: \(\frac{7x-1}{\left(x+1\right)\left(x-1\right)}\) - step9: Multiply the terms: \(\frac{7x-1}{x^{2}-1}\) Calculate or simplify the expression \( (x^2 + 7*x)/(x^2 - 4) + (x - 3)/(2 - x) - 5/(x + 2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{2}+7x\right)}{\left(x^{2}-4\right)}+\frac{\left(x-3\right)}{\left(2-x\right)}-\frac{5}{\left(x+2\right)}\) - step1: Remove the parentheses: \(\frac{x^{2}+7x}{x^{2}-4}+\frac{x-3}{2-x}-\frac{5}{x+2}\) - step2: Rewrite the fractions: \(\frac{x^{2}+7x}{x^{2}-4}-\frac{x-3}{-2+x}-\frac{5}{x+2}\) - step3: Factor the expression: \(\frac{x^{2}+7x}{\left(x+2\right)\left(x-2\right)}-\frac{x-3}{-2+x}-\frac{5}{x+2}\) - step4: Reduce fractions to a common denominator: \(\frac{x^{2}+7x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-3\right)\left(x+2\right)}{\left(-2+x\right)\left(x+2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step5: Rewrite the expression: \(\frac{x^{2}+7x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step6: Transform the expression: \(\frac{x^{2}+7x-\left(x-3\right)\left(x+2\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step7: Multiply the terms: \(\frac{x^{2}+7x-\left(x^{2}-x-6\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\) - step8: Multiply the terms: \(\frac{x^{2}+7x-\left(x^{2}-x-6\right)-\left(5x-10\right)}{\left(x+2\right)\left(x-2\right)}\) - step9: Calculate: \(\frac{3x+16}{\left(x+2\right)\left(x-2\right)}\) - step10: Multiply the terms: \(\frac{3x+16}{x^{2}-4}\) Calculate or simplify the expression \( -6/(x+2) - (-x + 3)/x + (x - 1)/(3*x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{-6}{\left(x+2\right)}-\frac{\left(-x+3\right)}{x}+\frac{\left(x-1\right)}{3x}\) - step1: Remove the parentheses: \(\frac{-6}{x+2}-\frac{-x+3}{x}+\frac{x-1}{3x}\) - step2: Use the rules for multiplication and division: \(\frac{-6}{x+2}+\frac{x-3}{x}+\frac{x-1}{3x}\) - step3: Rewrite the fraction: \(-\frac{6}{x+2}+\frac{x-3}{x}+\frac{x-1}{3x}\) - step4: Reduce fractions to a common denominator: \(-\frac{6\times 3x}{\left(x+2\right)\times 3x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{x\times 3\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{3x\left(x+2\right)}\) - step5: Reorder the terms: \(-\frac{6\times 3x}{3\left(x+2\right)x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{x\times 3\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{3x\left(x+2\right)}\) - step6: Reorder the terms: \(-\frac{6\times 3x}{3\left(x+2\right)x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{3x\left(x+2\right)}+\frac{\left(x-1\right)\left(x+2\right)}{3x\left(x+2\right)}\) - step7: Rewrite the expression: \(-\frac{6\times 3x}{3\left(x+2\right)x}+\frac{\left(x-3\right)\times 3\left(x+2\right)}{3\left(x+2\right)x}+\frac{\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step8: Transform the expression: \(\frac{-6\times 3x+\left(x-3\right)\times 3\left(x+2\right)+\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step9: Multiply the terms: \(\frac{-18x+\left(x-3\right)\times 3\left(x+2\right)+\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step10: Multiply the terms: \(\frac{-18x+3x^{2}-3x-18+\left(x-1\right)\left(x+2\right)}{3\left(x+2\right)x}\) - step11: Multiply the terms: \(\frac{-18x+3x^{2}-3x-18+x^{2}+x-2}{3\left(x+2\right)x}\) - step12: Calculate: \(\frac{-20x+4x^{2}-20}{3\left(x+2\right)x}\) - step13: Calculate: \(\frac{-20x+4x^{2}-20}{3x^{2}+6x}\) Here are the simplified results for each expression: **g)** \[ \frac{-6}{x+2} - \frac{-x + 3}{x} + \frac{x - 1}{3x} = \frac{-20x + 4x^{2} - 20}{3x^{2} + 6x} \] **h)** \[ \frac{x^{2} + 7x}{x^{2} - 4} + \frac{x - 3}{2 - x} - \frac{5}{x + 2} = \frac{3x + 16}{x^{2} - 4} \] **i)** \[ \frac{x}{x - 1} + \frac{x + 3}{x + 1} - \frac{4}{1 - x^{2}} = \frac{2x + 1}{x - 1} \] **j)** \[ \frac{a}{ax + a} - \frac{x - 2}{x + 1} + \frac{x + 2}{x - 1} = \frac{7x - 1}{x^{2} - 1} \] If you need further assistance or explanations for any of these steps, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let's simplify those expressions step by step! For the first expression, \( \frac{-6}{x+2}-\frac{-x+3}{x}+\frac{x-1}{3 x} \), we can find a common denominator, which would be \( 3x(x+2) \). This allows us to combine the fractions into one, simplifying the entire expression efficiently to see the impact of combining like terms. Now, moving to the second expression, \( \frac{x^{2}+7 x}{x^{2}-4}+\frac{x-3}{2-x}-\frac{5}{x+2} \), notice that \( x^2 - 4 \) can be factored as \( (x-2)(x+2) \), opening up avenues for simplification. Combining \( \frac{x-3}{2-x} \) could prove tricky; keep in mind that we might have to flip the signs to align with our other fractions' orientations! These initial steps lay the ground for simplifying these expressions, leading to clearer results and more manageable equations! Keep the common denominators in mind and watch for factoring opportunities!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy