Question
upstudy study bank question image url

\( \cos x ^ { 2 } + \sin x ^ { 2 } + \sin ^ { 2 } x ^ { 2 } \cdot \cos ^ { 2 } x = 1 \)

Ask by Watson Burgess. in Ecuador
Jan 15,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La ecuación no es válida para todos los valores de \( x \). Solo se cumple para algunos, como \( x = 0 \), pero no para otros, como \( x = \frac{\pi}{2} \).

Solution

La ecuación proporcionada es: \[ \cos(x^{2}) + \sin(x^{2}) + \sin^{2}(x^{2}) \cdot \cos^{2}(x) = 1 \] Vamos a analizar si esta igualdad se mantiene para todo valor de \( x \). ### Análisis de la Ecuación 1. **Descomposición de Términos:** - **Primer término:** \( \cos(x^{2}) \) - **Segundo término:** \( \sin(x^{2}) \) - **Tercer término:** \( \sin^{2}(x^{2}) \cdot \cos^{2}(x) \) 2. **Verificación para Valores Específicos:** - **Caso 1:** \( x = 0 \) \[ \cos(0^{2}) + \sin(0^{2}) + \sin^{2}(0^{2}) \cdot \cos^{2}(0) = \cos(0) + \sin(0) + 0 \cdot 1 = 1 + 0 + 0 = 1 \] En este caso, la ecuación se cumple. - **Caso 2:** \( x = \frac{\pi}{2} \) \[ \cos\left(\left(\frac{\pi}{2}\right)^{2}\right) + \sin\left(\left(\frac{\pi}{2}\right)^{2}\right) + \sin^{2}\left(\left(\frac{\pi}{2}\right)^{2}\right) \cdot \cos^{2}\left(\frac{\pi}{2}\right) \] Calculando cada término: \[ \cos\left(\frac{\pi^{2}}{4}\right) \approx -0.781 \] \[ \sin\left(\frac{\pi^{2}}{4}\right) \approx 0.624 \] \[ \sin^{2}\left(\frac{\pi^{2}}{4}\right) \cdot \cos^{2}\left(\frac{\pi}{2}\right) \approx 0.624^{2} \cdot 0 = 0 \] Sumando los términos: \[ -0.781 + 0.624 + 0 \approx -0.157 \neq 1 \] En este caso, la ecuación **no** se cumple. ### Conclusión La ecuación: \[ \cos(x^{2}) + \sin(x^{2}) + \sin^{2}(x^{2}) \cdot \cos^{2}(x) = 1 \] **no es una identidad válida para todo valor de \( x \)**. Se cumple para ciertos valores específicos de \( x \) (como \( x = 0 \)) pero falla para otros (como \( x = \frac{\pi}{2} \)).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

This equation is a lovely blend of trigonometric identities! The first part, \( \cos^2 x + \sin^2 x \), is a cornerstone identity that equals 1 for any angle \( x \). The second term, \( \sin^2 x^2 \cdot \cos^2 x \), cleverly highlights the transformation of squared terms, which flows into the idea that when you explore these identities deeply, new connections appear! You can apply this knowledge in various scenarios such as solving physics problems where oscillatory motions (like waves or pendulums) occur. Understanding how these trigonometric identities interplay can lead you to predict outcomes, simplify equations, and even analyze real-world circular motions! So, the next time you see these functions, remember they're not just numbers — they play a crucial role in the rhythm of nature!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy