Question
upstudy study bank question image url

a) \( |x-1|=2 x-1 \)

Ask by Warner Watson. in Ecuador
Dec 16,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución es \( x = 0 \) y \( x = \frac{2}{3} \).

Solution

a) \( |x-1|=2x-1 \) Para resolver esta desigualdad, primero consideramos que el valor absoluto de una expresión es igual a una cantidad positiva si y solo si la expresión puede ser igual a esa cantidad positiva o a su negativo. Por lo tanto, podemos descomponer la desigualdad en dos casos: 1. \( x - 1 = 2x - 1 \) 2. \( x - 1 = -(2x - 1) \) Resolvamos cada caso: 1. \( x - 1 = 2x - 1 \) \[ x - 2x = -1 + 1 \\ -x = 0 \\ x = 0 \] 2. \( x - 1 = -(2x - 1) \) \[ x - 1 = -2x + 1 \\ x + 2x = 1 + 1 \\ 3x = 2 \\ x = \frac{2}{3} \] Ahora, verificamos estos valores en la desigualdad original: Para \( x = 0 \): \[ |x - 1| = |0 - 1| = |-1| = 1 \\ 2x - 1 = 2(0) - 1 = -1 \] Por lo tanto, \( |x - 1| = 2x - 1 \) es verdadero para \( x = 0 \). Para \( x = \frac{2}{3} \): \[ |x - 1| = \left|\frac{2}{3} - 1\right| = \left|-\frac{1}{3}\right| = \frac{1}{3} \\ 2x - 1 = 2\left(\frac{2}{3}\right) - 1 = \frac{4}{3} - 1 = \frac{1}{3} \] Por lo tanto, \( |x - 1| = 2x - 1 \) es verdadero para \( x = \frac{2}{3} \). Ambos valores, \( x = 0 \) y \( x = \frac{2}{3} \), satisfacen la desigualdad original. Por lo tanto, la solución es \( x = 0 \) y \( x = \frac{2}{3} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the equation \( |x-1|=2x-1 \), we can break it down into two cases based on the definition of absolute value. **Case 1:** When \( x-1 \geq 0 \) (which simplifies to \( x \geq 1 \)), the equation becomes \( x-1=2x-1 \). Solving this gives \( x=0 \), which doesn't satisfy \( x \geq 1 \). **Case 2:** When \( x-1 < 0 \) (or \( x < 1 \)), the equation simplifies to \( -(x-1) = 2x - 1 \), leading to \( -x + 1 = 2x - 1 \). Solving this gives \( 3x = 2 \), or \( x = \frac{2}{3} \), which satisfies \( x < 1 \) and is thus a valid solution. So, the solution to \( |x-1|=2x-1 \) is \( x = \frac{2}{3} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy