Answer
1. \( 2x^{4}y^{5} \)
2. \( 4x^{4} \)
3. \( 2ab^{2}c^{3} \)
4. \( \frac{3y}{2x^{2}} \)
5. \( 10m^{2}x \)
6. \( 6x^{2} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(64^{\frac{1}{6}}\left(a^{6}\right)^{\frac{1}{6}}\left(b^{12}\right)^{\frac{1}{6}}\left(c^{18}\right)^{\frac{1}{6}}\)
- step1: Multiply the exponents:
\(64^{\frac{1}{6}}\left(a^{6}\right)^{\frac{1}{6}}\left(b^{12}\right)^{\frac{1}{6}}c^{18\times \frac{1}{6}}\)
- step2: Multiply the exponents:
\(64^{\frac{1}{6}}\left(a^{6}\right)^{\frac{1}{6}}b^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\)
- step3: Multiply the exponents:
\(64^{\frac{1}{6}}a^{6\times \frac{1}{6}}b^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\)
- step4: Multiply the numbers:
\(64^{\frac{1}{6}}a^{1}b^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\)
- step5: Calculate:
\(64^{\frac{1}{6}}ab^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\)
- step6: Multiply the numbers:
\(64^{\frac{1}{6}}ab^{2}c^{18\times \frac{1}{6}}\)
- step7: Multiply the numbers:
\(64^{\frac{1}{6}}ab^{2}c^{3}\)
- step8: Evaluate the power:
\(2ab^{2}c^{3}\)
Calculate or simplify the expression \( (3 * x)^(1/3) * (72 * x^5)^(1/3) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3x\right)^{\frac{1}{3}}\left(72x^{5}\right)^{\frac{1}{3}}\)
- step1: Rewrite the expression:
\(3^{\frac{1}{3}}x^{\frac{1}{3}}\times 72^{\frac{1}{3}}x^{\frac{5}{3}}\)
- step2: Multiply the numbers:
\(3^{\frac{1}{3}}\times 72^{\frac{1}{3}}x^{\frac{1}{3}}\times x^{\frac{5}{3}}\)
- step3: Multiply the terms:
\(3^{\frac{1}{3}}\times 72^{\frac{1}{3}}x^{2}\)
- step4: Simplify:
\(\sqrt[3]{3}\times 2\sqrt[3]{9}\times x^{2}\)
- step5: Expand the expression:
\(6x^{2}\)
Calculate or simplify the expression \( (8)^(1/3) * (x^(12))^(1/3) * (y^(15))^(1/3) \).
Simplify the expression by following steps:
- step0: Solution:
\(8^{\frac{1}{3}}\left(x^{12}\right)^{\frac{1}{3}}\left(y^{15}\right)^{\frac{1}{3}}\)
- step1: Multiply the exponents:
\(8^{\frac{1}{3}}\left(x^{12}\right)^{\frac{1}{3}}y^{15\times \frac{1}{3}}\)
- step2: Multiply the exponents:
\(8^{\frac{1}{3}}x^{12\times \frac{1}{3}}y^{15\times \frac{1}{3}}\)
- step3: Multiply the numbers:
\(8^{\frac{1}{3}}x^{4}y^{15\times \frac{1}{3}}\)
- step4: Multiply the numbers:
\(8^{\frac{1}{3}}x^{4}y^{5}\)
- step5: Evaluate the power:
\(2x^{4}y^{5}\)
Calculate or simplify the expression \( \sqrt(27 * x^3 * y^5 / (12 * x^7 * y^3)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{\frac{27x^{3}y^{5}}{12x^{7}y^{3}}}\)
- step1: Divide the terms:
\(\sqrt{\frac{9y^{2}}{4x^{4}}}\)
- step2: Use the properties of radicals:
\(\frac{\sqrt{9y^{2}}}{\sqrt{4x^{4}}}\)
- step3: Simplify the expression:
\(\frac{3y}{2x^{2}}\)
Calculate or simplify the expression \( \sqrt(2 * x^3) * \sqrt(8 * x^5) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{2x^{3}}\times \sqrt{8x^{5}}\)
- step1: Simplify the root:
\(x\sqrt{2x}\times \sqrt{8x^{5}}\)
- step2: Simplify the root:
\(x\sqrt{2x}\times 2x^{2}\sqrt{2x}\)
- step3: Calculate:
\(x\times 2x^{2}\times 2x\)
- step4: Multiply the terms:
\(4x\times x^{2}\times x\)
- step5: Calculate:
\(4x^{3}\times x\)
- step6: Calculate:
\(4x^{4}\)
Calculate or simplify the expression \( \sqrt(2 * m^3) * \sqrt(50 * m * x^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{2m^{3}}\times \sqrt{50mx^{2}}\)
- step1: Simplify the root:
\(m\sqrt{2m}\times \sqrt{50mx^{2}}\)
- step2: Simplify the root:
\(m\sqrt{2m}\times 5x\sqrt{2m}\)
- step3: Calculate:
\(m\times 5x\times 2m\)
- step4: Multiply the terms:
\(10mxm\)
- step5: Calculate:
\(10m^{2}x\)
Here are the simplified results for each expression:
2. For \( \sqrt[3]{8 x^{12} y^{15}} \):
\[
\sqrt[3]{8} = 2, \quad \sqrt[3]{x^{12}} = x^{4}, \quad \sqrt[3]{y^{15}} = y^{5}
\]
Therefore, the result is:
\[
2x^{4}y^{5}
\]
4. For \( \sqrt{2 x^{3}} \times \sqrt{8 x^{5}} \):
\[
\sqrt{2} \times \sqrt{8} = \sqrt{16} = 4, \quad \sqrt{x^{3}} \times \sqrt{x^{5}} = \sqrt{x^{8}} = x^{4}
\]
Therefore, the result is:
\[
4x^{4}
\]
6. For \( \sqrt[6]{64 a^{6} b^{12} c^{18}} \):
\[
\sqrt[6]{64} = 2, \quad \sqrt[6]{a^{6}} = a, \quad \sqrt[6]{b^{12}} = b^{2}, \quad \sqrt[6]{c^{18}} = c^{3}
\]
Therefore, the result is:
\[
2ab^{2}c^{3}
\]
8. For \( \sqrt{\frac{27 x^{3} y^{5}}{12 x^{7} y^{3}}} \):
\[
\frac{27}{12} = \frac{9}{4}, \quad \sqrt{x^{3}/x^{7}} = \sqrt{x^{-4}} = \frac{1}{x^{2}}, \quad \sqrt{y^{5}/y^{3}} = \sqrt{y^{2}} = y
\]
Therefore, the result is:
\[
\frac{3y}{2x^{2}}
\]
10. For \( \sqrt{2 m^{3}} \times \sqrt{50 m x^{2}} \):
\[
\sqrt{2} \times \sqrt{50} = \sqrt{100} = 10, \quad \sqrt{m^{3}} \times \sqrt{m} = \sqrt{m^{4}} = m^{2}, \quad \sqrt{x^{2}} = x
\]
Therefore, the result is:
\[
10m^{2}x
\]
12. For \( \sqrt[3]{3 x} \times \sqrt[3]{72 x^{5}} \):
\[
\sqrt[3]{3} \times \sqrt[3]{72} = \sqrt[3]{216} = 6, \quad \sqrt[3]{x} \times \sqrt[3]{x^{5}} = \sqrt[3]{x^{6}} = x^{2}
\]
Therefore, the result is:
\[
6x^{2}
\]
In summary, the simplified results are:
1. \( 2x^{4}y^{5} \)
2. \( 4x^{4} \)
3. \( 2ab^{2}c^{3} \)
4. \( \frac{3y}{2x^{2}} \)
5. \( 10m^{2}x \)
6. \( 6x^{2} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution