Question
upstudy study bank question image url

2. \( \sqrt[3]{8 x^{12} y^{15}} \) 4. \( \sqrt{2 x^{3}} \times \sqrt{8 x^{5}} \) 6. \( \sqrt[6]{64 a^{6} b^{12} c^{18}} \) 8. \( \sqrt{\frac{27 x^{3} y^{5}}{12 x^{7} y^{3}}} \) (10.) \( \sqrt{2 m^{3}} \times \sqrt{50 m x^{2}} \) 12. \( \sqrt[3]{3 x} \times \sqrt[3]{72 x^{5}} \)

Ask by Valdez Lowe. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( 2x^{4}y^{5} \) 2. \( 4x^{4} \) 3. \( 2ab^{2}c^{3} \) 4. \( \frac{3y}{2x^{2}} \) 5. \( 10m^{2}x \) 6. \( 6x^{2} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(64^{\frac{1}{6}}\left(a^{6}\right)^{\frac{1}{6}}\left(b^{12}\right)^{\frac{1}{6}}\left(c^{18}\right)^{\frac{1}{6}}\) - step1: Multiply the exponents: \(64^{\frac{1}{6}}\left(a^{6}\right)^{\frac{1}{6}}\left(b^{12}\right)^{\frac{1}{6}}c^{18\times \frac{1}{6}}\) - step2: Multiply the exponents: \(64^{\frac{1}{6}}\left(a^{6}\right)^{\frac{1}{6}}b^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\) - step3: Multiply the exponents: \(64^{\frac{1}{6}}a^{6\times \frac{1}{6}}b^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\) - step4: Multiply the numbers: \(64^{\frac{1}{6}}a^{1}b^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\) - step5: Calculate: \(64^{\frac{1}{6}}ab^{12\times \frac{1}{6}}c^{18\times \frac{1}{6}}\) - step6: Multiply the numbers: \(64^{\frac{1}{6}}ab^{2}c^{18\times \frac{1}{6}}\) - step7: Multiply the numbers: \(64^{\frac{1}{6}}ab^{2}c^{3}\) - step8: Evaluate the power: \(2ab^{2}c^{3}\) Calculate or simplify the expression \( (3 * x)^(1/3) * (72 * x^5)^(1/3) \). Simplify the expression by following steps: - step0: Solution: \(\left(3x\right)^{\frac{1}{3}}\left(72x^{5}\right)^{\frac{1}{3}}\) - step1: Rewrite the expression: \(3^{\frac{1}{3}}x^{\frac{1}{3}}\times 72^{\frac{1}{3}}x^{\frac{5}{3}}\) - step2: Multiply the numbers: \(3^{\frac{1}{3}}\times 72^{\frac{1}{3}}x^{\frac{1}{3}}\times x^{\frac{5}{3}}\) - step3: Multiply the terms: \(3^{\frac{1}{3}}\times 72^{\frac{1}{3}}x^{2}\) - step4: Simplify: \(\sqrt[3]{3}\times 2\sqrt[3]{9}\times x^{2}\) - step5: Expand the expression: \(6x^{2}\) Calculate or simplify the expression \( (8)^(1/3) * (x^(12))^(1/3) * (y^(15))^(1/3) \). Simplify the expression by following steps: - step0: Solution: \(8^{\frac{1}{3}}\left(x^{12}\right)^{\frac{1}{3}}\left(y^{15}\right)^{\frac{1}{3}}\) - step1: Multiply the exponents: \(8^{\frac{1}{3}}\left(x^{12}\right)^{\frac{1}{3}}y^{15\times \frac{1}{3}}\) - step2: Multiply the exponents: \(8^{\frac{1}{3}}x^{12\times \frac{1}{3}}y^{15\times \frac{1}{3}}\) - step3: Multiply the numbers: \(8^{\frac{1}{3}}x^{4}y^{15\times \frac{1}{3}}\) - step4: Multiply the numbers: \(8^{\frac{1}{3}}x^{4}y^{5}\) - step5: Evaluate the power: \(2x^{4}y^{5}\) Calculate or simplify the expression \( \sqrt(27 * x^3 * y^5 / (12 * x^7 * y^3)) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{\frac{27x^{3}y^{5}}{12x^{7}y^{3}}}\) - step1: Divide the terms: \(\sqrt{\frac{9y^{2}}{4x^{4}}}\) - step2: Use the properties of radicals: \(\frac{\sqrt{9y^{2}}}{\sqrt{4x^{4}}}\) - step3: Simplify the expression: \(\frac{3y}{2x^{2}}\) Calculate or simplify the expression \( \sqrt(2 * x^3) * \sqrt(8 * x^5) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{2x^{3}}\times \sqrt{8x^{5}}\) - step1: Simplify the root: \(x\sqrt{2x}\times \sqrt{8x^{5}}\) - step2: Simplify the root: \(x\sqrt{2x}\times 2x^{2}\sqrt{2x}\) - step3: Calculate: \(x\times 2x^{2}\times 2x\) - step4: Multiply the terms: \(4x\times x^{2}\times x\) - step5: Calculate: \(4x^{3}\times x\) - step6: Calculate: \(4x^{4}\) Calculate or simplify the expression \( \sqrt(2 * m^3) * \sqrt(50 * m * x^2) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{2m^{3}}\times \sqrt{50mx^{2}}\) - step1: Simplify the root: \(m\sqrt{2m}\times \sqrt{50mx^{2}}\) - step2: Simplify the root: \(m\sqrt{2m}\times 5x\sqrt{2m}\) - step3: Calculate: \(m\times 5x\times 2m\) - step4: Multiply the terms: \(10mxm\) - step5: Calculate: \(10m^{2}x\) Here are the simplified results for each expression: 2. For \( \sqrt[3]{8 x^{12} y^{15}} \): \[ \sqrt[3]{8} = 2, \quad \sqrt[3]{x^{12}} = x^{4}, \quad \sqrt[3]{y^{15}} = y^{5} \] Therefore, the result is: \[ 2x^{4}y^{5} \] 4. For \( \sqrt{2 x^{3}} \times \sqrt{8 x^{5}} \): \[ \sqrt{2} \times \sqrt{8} = \sqrt{16} = 4, \quad \sqrt{x^{3}} \times \sqrt{x^{5}} = \sqrt{x^{8}} = x^{4} \] Therefore, the result is: \[ 4x^{4} \] 6. For \( \sqrt[6]{64 a^{6} b^{12} c^{18}} \): \[ \sqrt[6]{64} = 2, \quad \sqrt[6]{a^{6}} = a, \quad \sqrt[6]{b^{12}} = b^{2}, \quad \sqrt[6]{c^{18}} = c^{3} \] Therefore, the result is: \[ 2ab^{2}c^{3} \] 8. For \( \sqrt{\frac{27 x^{3} y^{5}}{12 x^{7} y^{3}}} \): \[ \frac{27}{12} = \frac{9}{4}, \quad \sqrt{x^{3}/x^{7}} = \sqrt{x^{-4}} = \frac{1}{x^{2}}, \quad \sqrt{y^{5}/y^{3}} = \sqrt{y^{2}} = y \] Therefore, the result is: \[ \frac{3y}{2x^{2}} \] 10. For \( \sqrt{2 m^{3}} \times \sqrt{50 m x^{2}} \): \[ \sqrt{2} \times \sqrt{50} = \sqrt{100} = 10, \quad \sqrt{m^{3}} \times \sqrt{m} = \sqrt{m^{4}} = m^{2}, \quad \sqrt{x^{2}} = x \] Therefore, the result is: \[ 10m^{2}x \] 12. For \( \sqrt[3]{3 x} \times \sqrt[3]{72 x^{5}} \): \[ \sqrt[3]{3} \times \sqrt[3]{72} = \sqrt[3]{216} = 6, \quad \sqrt[3]{x} \times \sqrt[3]{x^{5}} = \sqrt[3]{x^{6}} = x^{2} \] Therefore, the result is: \[ 6x^{2} \] In summary, the simplified results are: 1. \( 2x^{4}y^{5} \) 2. \( 4x^{4} \) 3. \( 2ab^{2}c^{3} \) 4. \( \frac{3y}{2x^{2}} \) 5. \( 10m^{2}x \) 6. \( 6x^{2} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

When calculating the cube root of \(8 x^{12} y^{15}\), remember that you can simplify each factor separately. The cube root of 8 is 2, and for the variables, just divide the exponents by 3. Therefore, this gives you \(2 x^{4} y^{5}\), which makes manipulating expressions involving roots much easier! For \( \sqrt{2 m^{3}} \times \sqrt{50 m x^{2}} \), don’t forget to combine the square roots first! By multiplying the radicands, you can simplify to \( \sqrt{100 m^{4} x^{2}} \), which can then be easily simplified to \(10 m^{2} x\). Remember, combining before simplifying is like making a delicious smoothie; mix it all together for the best flavor!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy