3) \( -\frac{2}{3} \sqrt{27}+\frac{1}{5} \sqrt{300}+5 \sqrt{3} \) 4) \( 2 \sqrt{8}+0,5 \sqrt{32}-\frac{1}{3} \sqrt{18} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
Let's simplify the first expression: First, simplify \( \sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3} \), so \( -\frac{2}{3}\sqrt{27} = -\frac{2}{3} \times 3\sqrt{3} = -2\sqrt{3} \). Next, \( \sqrt{300} = \sqrt{100 \times 3} = 10\sqrt{3} \), thus \( \frac{1}{5}\sqrt{300} = \frac{1}{5} \times 10\sqrt{3} = 2\sqrt{3} \). Adding these gives \( -2\sqrt{3} + 2\sqrt{3} + 5\sqrt{3} = 5\sqrt{3} \). For the second expression, \( \sqrt{8} = 2\sqrt{2} \) yields \( 2\sqrt{8} = 4\sqrt{2} \). Next, \( \sqrt{32} = 4\sqrt{2} \) means \( 0.5\sqrt{32} = 2\sqrt{2} \). Finally, \( \sqrt{18} = 3\sqrt{2} \), so \( -\frac{1}{3}\sqrt{18} = -\sqrt{2} \). Putting this all together: \( 4\sqrt{2} + 2\sqrt{2} - \sqrt{2} = 5\sqrt{2} \). The results are \( 5\sqrt{3} \) and \( 5\sqrt{2} \).