Question
upstudy study bank question image url

3) \( -\frac{2}{3} \sqrt{27}+\frac{1}{5} \sqrt{300}+5 \sqrt{3} \) 4) \( 2 \sqrt{8}+0,5 \sqrt{32}-\frac{1}{3} \sqrt{18} \)

Ask by Love Rodriquez. in Kyrgyzstan
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

3) 5√3 4) 5√2

Solution

Рассмотрим оба выражения по порядку. ────────────────────────────── Задача 3: Дано:   –(2/3)√27 + (1/5)√300 + 5√3 1. Упростим каждый корень.  • √27 = √(9·3) = 3√3.  • √300 = √(100·3) = 10√3.  • √3 остаётся без изменений. 2. Подставим выражения:   –(2/3)·(3√3) + (1/5)·(10√3) + 5√3   = –2√3 + 2√3 + 5√3 3. Сложим подобные слагаемые:   (–2√3 + 2√3) = 0, следовательно остаётся 5√3. Ответ к задаче 3: 5√3. ────────────────────────────── Задача 4: Дано:   2√8 + 0,5√32 – (1/3)√18 1. Упростим каждый корень.  • √8 = √(4·2) = 2√2.  • √32 = √(16·2) = 4√2.  • √18 = √(9·2) = 3√2. 2. Подставим выражения:   2·(2√2) + 0,5·(4√2) – (1/3)·(3√2)   = 4√2 + 2√2 – √2 3. Сложим подобные слагаемые:   4√2 + 2√2 – √2 = (4 + 2 – 1)√2 = 5√2. Ответ к задаче 4: 5√2. ────────────────────────────── Итог:   3) 5√3   4) 5√2

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let's simplify the first expression: First, simplify \( \sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3} \), so \( -\frac{2}{3}\sqrt{27} = -\frac{2}{3} \times 3\sqrt{3} = -2\sqrt{3} \). Next, \( \sqrt{300} = \sqrt{100 \times 3} = 10\sqrt{3} \), thus \( \frac{1}{5}\sqrt{300} = \frac{1}{5} \times 10\sqrt{3} = 2\sqrt{3} \). Adding these gives \( -2\sqrt{3} + 2\sqrt{3} + 5\sqrt{3} = 5\sqrt{3} \). For the second expression, \( \sqrt{8} = 2\sqrt{2} \) yields \( 2\sqrt{8} = 4\sqrt{2} \). Next, \( \sqrt{32} = 4\sqrt{2} \) means \( 0.5\sqrt{32} = 2\sqrt{2} \). Finally, \( \sqrt{18} = 3\sqrt{2} \), so \( -\frac{1}{3}\sqrt{18} = -\sqrt{2} \). Putting this all together: \( 4\sqrt{2} + 2\sqrt{2} - \sqrt{2} = 5\sqrt{2} \). The results are \( 5\sqrt{3} \) and \( 5\sqrt{2} \).

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy