3 If \( \cos A=\frac{S}{6} \) and \( A+B-90^{\circ} \), use a sketch to find the value of \( \frac{\tan A \cdot \tan B \cdot \sin A}{\cos B} \). Prove the following identities: \( 4.1 \quad \cos ^{2} x+\sin x \cdot \cos x \cdot \tan x=1 \) \( 4.2 \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=2 \cos ^{2} \theta-1 \) sinf 5 Simplify each of the following. osi \( 5.1 \frac{2 \sin \left(90^{\circ}-x\right)-\cos \left(360^{\circ}-x\right)}{2 \cos \left(90^{\circ}+x\right)-\sin \left(180^{\circ}+x\right)} \) e \( 5.2 \frac{\tan \left(180^{\circ}-x\right) \tan 45^{\circ} \cdot \cos (-x)}{\sin \left(180^{\circ}-x\right)} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To find the value of \( \frac{\tan A \cdot \tan B \cdot \sin A}{\cos B} \) given that \( \cos A = \frac{S}{6} \) and \( A + B = 90^\circ \), you can use the relationships from trigonometric identities. Given that \( B = 90^\circ - A \), we have \( \tan B = \cot A \). Thus, \( \frac{\tan A \cdot \tan B \cdot \sin A}{\cos B} = \frac{\tan A \cdot \cot A \cdot \sin A}{\cos(90^\circ - A)} = \frac{\sin A}{\sin A} = 1 \). Now, let's tackle the identities: 1. For \( \cos^2 x + \sin x \cdot \cos x \cdot \tan x = 1 \), we can rewrite \( \tan x \) as \( \frac{\sin x}{\cos x} \), yielding \( \cos^2 x + \sin x \cdot \cos x \cdot \frac{\sin x}{\cos x} = \cos^2 x + \sin^2 x = 1 \), proving the identity. 2. Next, for \( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = 2 \cos^2 \theta - 1 \), we know \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). Replacing and simplifying yields \( 2\cos^2 \theta - 1 \), confirming the identity. Lastly, for simplification: 5.1: Simplifying \( \frac{2 \sin(90^\circ - x) - \cos(360^\circ - x)}{2 \cos(90^\circ + x) - \sin(180^\circ + x)} \) yields \( \frac{2 \cos x - \cos x}{-2 \sin x + \sin x} \) leading to \( \frac{1}{- \sin x} = -\csc x \). 5.2: The expression \( \frac{\tan(180^\circ - x) \tan 45^\circ \cdot \cos(-x)}{\sin(180^\circ - x)} \) simplifies to \( \frac{-\tan x \cdot 1 \cdot \cos x}{\sin x} = -\cot x \).