Question
upstudy study bank question image url

4. a. \( 2^{-2}+2^{-3} \quad \) b. \( 4^{0}-4^{-1} \quad \) c. \( \quad 3^{-2}+\frac{1}{4^{-2}}+15^{0}-10^{1} \)

Ask by Maxwell Brooks. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Part a: \( \frac{3}{8} \) or \( 0.375 \) Part b: \( \frac{3}{4} \) or \( 0.75 \) Part c: \( \frac{64}{9} \) or \( 7\frac{1}{9} \) or \( 7.\dot{1} \)

Solution

Calculate the value by following steps: - step0: Calculate: \(2^{-2}+2^{-3}\) - step1: Evaluate the power: \(\frac{1}{4}+2^{-3}\) - step2: Evaluate the power: \(\frac{1}{4}+\frac{1}{8}\) - step3: Reduce fractions to a common denominator: \(\frac{2}{4\times 2}+\frac{1}{8}\) - step4: Multiply the numbers: \(\frac{2}{8}+\frac{1}{8}\) - step5: Transform the expression: \(\frac{2+1}{8}\) - step6: Add the numbers: \(\frac{3}{8}\) Calculate or simplify the expression \( 3^(-2) + 1/(4^(-2)) + 15^(0) - 10^(1) \). Calculate the value by following steps: - step0: Calculate: \(3^{-2}+\frac{1}{\left(4^{-2}\right)}+15^{0}-10^{1}\) - step1: Evaluate: \(3^{-2}+\frac{1}{4^{-2}}+15^{0}-10^{1}\) - step2: Evaluate the power: \(3^{-2}+\frac{1}{4^{-2}}+1-10^{1}\) - step3: Divide the terms: \(3^{-2}+16+1-10^{1}\) - step4: Evaluate the power: \(3^{-2}+16+1-10\) - step5: Evaluate the power: \(\frac{1}{9}+16+1-10\) - step6: Calculate: \(\frac{1}{9}+7\) - step7: Reduce fractions to a common denominator: \(\frac{1}{9}+\frac{7\times 9}{9}\) - step8: Transform the expression: \(\frac{1+7\times 9}{9}\) - step9: Multiply the numbers: \(\frac{1+63}{9}\) - step10: Add the numbers: \(\frac{64}{9}\) Calculate or simplify the expression \( 4^(0) - 4^(-1) \). Calculate the value by following steps: - step0: Calculate: \(4^{0}-4^{-1}\) - step1: Evaluate the power: \(1-4^{-1}\) - step2: Calculate: \(1-\frac{1}{4}\) - step3: Reduce fractions to a common denominator: \(\frac{4}{4}-\frac{1}{4}\) - step4: Transform the expression: \(\frac{4-1}{4}\) - step5: Subtract the numbers: \(\frac{3}{4}\) Let's solve each part step by step. ### Part a: \( 2^{-2} + 2^{-3} \) 1. Calculate \( 2^{-2} \): \[ 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \] 2. Calculate \( 2^{-3} \): \[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \] 3. Now, add the two results: \[ 2^{-2} + 2^{-3} = \frac{1}{4} + \frac{1}{8} \] To add these fractions, we need a common denominator, which is 8: \[ \frac{1}{4} = \frac{2}{8} \] Therefore: \[ \frac{2}{8} + \frac{1}{8} = \frac{3}{8} \] ### Result for Part a: \[ \frac{3}{8} \quad \text{or} \quad 0.375 \] --- ### Part b: \( 4^{0} - 4^{-1} \) 1. Calculate \( 4^{0} \): \[ 4^{0} = 1 \] 2. Calculate \( 4^{-1} \): \[ 4^{-1} = \frac{1}{4} \] 3. Now, subtract the two results: \[ 4^{0} - 4^{-1} = 1 - \frac{1}{4} \] To perform the subtraction: \[ 1 = \frac{4}{4} \] Therefore: \[ \frac{4}{4} - \frac{1}{4} = \frac{3}{4} \] ### Result for Part b: \[ \frac{3}{4} \quad \text{or} \quad 0.75 \] --- ### Part c: \( 3^{-2} + \frac{1}{4^{-2}} + 15^{0} - 10^{1} \) 1. Calculate \( 3^{-2} \): \[ 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \] 2. Calculate \( \frac{1}{4^{-2}} \): \[ 4^{-2} = \frac{1}{4^2} = \frac{1}{16} \quad \Rightarrow \quad \frac{1}{4^{-2}} = 16 \] 3. Calculate \( 15^{0} \): \[ 15^{0} = 1 \] 4. Calculate \( 10^{1} \): \[ 10^{1} = 10 \] 5. Now, combine all the results: \[ 3^{-2} + \frac{1}{4^{-2}} + 15^{0} - 10^{1} = \frac{1}{9} + 16 + 1 - 10 \] Simplifying this: \[ = \frac{1}{9} + 7 \] Converting 7 to a fraction with a denominator of 9: \[ 7 = \frac{63}{9} \] Therefore: \[ \frac{1}{9} + \frac{63}{9} = \frac{64}{9} \] ### Result for Part c: \[ \frac{64}{9} \quad \text{or} \quad 7\frac{1}{9} \quad \text{or} \quad 7.\dot{1} \] --- ### Summary of Results: - Part a: \( \frac{3}{8} \) or \( 0.375 \) - Part b: \( \frac{3}{4} \) or \( 0.75 \) - Part c: \( \frac{64}{9} \) or \( 7\frac{1}{9} \) or \( 7.\dot{1} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

First, let’s dive into the calculations! For part a, \( 2^{-2} + 2^{-3} = \frac{1}{4} + \frac{1}{8} = \frac{2}{8} + \frac{1}{8} = \frac{3}{8} \). Part b boils down to \( 4^{0} - 4^{-1} = 1 - \frac{1}{4} = \frac{3}{4} \). Lastly, part c evaluates as \( 3^{-2} + \frac{1}{4^{-2}} + 15^{0} - 10^{1} = \frac{1}{9} + 16 + 1 - 10 = \frac{1}{9} + 16 - 9 = \frac{1}{9} + 7 = \frac{1}{9} + \frac{63}{9} = \frac{64}{9} \). These answers are not only a way to flex your mathematical muscles but also remind us how exponents simplify and transform numbers in exciting ways. Plus, adding fractions with different denominators can be a fun challenge—just don’t forget to find that common denominator!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy