Answer
Part a: \( \frac{3}{8} \) or \( 0.375 \)
Part b: \( \frac{3}{4} \) or \( 0.75 \)
Part c: \( \frac{64}{9} \) or \( 7\frac{1}{9} \) or \( 7.\dot{1} \)
Solution
Calculate the value by following steps:
- step0: Calculate:
\(2^{-2}+2^{-3}\)
- step1: Evaluate the power:
\(\frac{1}{4}+2^{-3}\)
- step2: Evaluate the power:
\(\frac{1}{4}+\frac{1}{8}\)
- step3: Reduce fractions to a common denominator:
\(\frac{2}{4\times 2}+\frac{1}{8}\)
- step4: Multiply the numbers:
\(\frac{2}{8}+\frac{1}{8}\)
- step5: Transform the expression:
\(\frac{2+1}{8}\)
- step6: Add the numbers:
\(\frac{3}{8}\)
Calculate or simplify the expression \( 3^(-2) + 1/(4^(-2)) + 15^(0) - 10^(1) \).
Calculate the value by following steps:
- step0: Calculate:
\(3^{-2}+\frac{1}{\left(4^{-2}\right)}+15^{0}-10^{1}\)
- step1: Evaluate:
\(3^{-2}+\frac{1}{4^{-2}}+15^{0}-10^{1}\)
- step2: Evaluate the power:
\(3^{-2}+\frac{1}{4^{-2}}+1-10^{1}\)
- step3: Divide the terms:
\(3^{-2}+16+1-10^{1}\)
- step4: Evaluate the power:
\(3^{-2}+16+1-10\)
- step5: Evaluate the power:
\(\frac{1}{9}+16+1-10\)
- step6: Calculate:
\(\frac{1}{9}+7\)
- step7: Reduce fractions to a common denominator:
\(\frac{1}{9}+\frac{7\times 9}{9}\)
- step8: Transform the expression:
\(\frac{1+7\times 9}{9}\)
- step9: Multiply the numbers:
\(\frac{1+63}{9}\)
- step10: Add the numbers:
\(\frac{64}{9}\)
Calculate or simplify the expression \( 4^(0) - 4^(-1) \).
Calculate the value by following steps:
- step0: Calculate:
\(4^{0}-4^{-1}\)
- step1: Evaluate the power:
\(1-4^{-1}\)
- step2: Calculate:
\(1-\frac{1}{4}\)
- step3: Reduce fractions to a common denominator:
\(\frac{4}{4}-\frac{1}{4}\)
- step4: Transform the expression:
\(\frac{4-1}{4}\)
- step5: Subtract the numbers:
\(\frac{3}{4}\)
Let's solve each part step by step.
### Part a: \( 2^{-2} + 2^{-3} \)
1. Calculate \( 2^{-2} \):
\[
2^{-2} = \frac{1}{2^2} = \frac{1}{4}
\]
2. Calculate \( 2^{-3} \):
\[
2^{-3} = \frac{1}{2^3} = \frac{1}{8}
\]
3. Now, add the two results:
\[
2^{-2} + 2^{-3} = \frac{1}{4} + \frac{1}{8}
\]
To add these fractions, we need a common denominator, which is 8:
\[
\frac{1}{4} = \frac{2}{8}
\]
Therefore:
\[
\frac{2}{8} + \frac{1}{8} = \frac{3}{8}
\]
### Result for Part a:
\[
\frac{3}{8} \quad \text{or} \quad 0.375
\]
---
### Part b: \( 4^{0} - 4^{-1} \)
1. Calculate \( 4^{0} \):
\[
4^{0} = 1
\]
2. Calculate \( 4^{-1} \):
\[
4^{-1} = \frac{1}{4}
\]
3. Now, subtract the two results:
\[
4^{0} - 4^{-1} = 1 - \frac{1}{4}
\]
To perform the subtraction:
\[
1 = \frac{4}{4}
\]
Therefore:
\[
\frac{4}{4} - \frac{1}{4} = \frac{3}{4}
\]
### Result for Part b:
\[
\frac{3}{4} \quad \text{or} \quad 0.75
\]
---
### Part c: \( 3^{-2} + \frac{1}{4^{-2}} + 15^{0} - 10^{1} \)
1. Calculate \( 3^{-2} \):
\[
3^{-2} = \frac{1}{3^2} = \frac{1}{9}
\]
2. Calculate \( \frac{1}{4^{-2}} \):
\[
4^{-2} = \frac{1}{4^2} = \frac{1}{16} \quad \Rightarrow \quad \frac{1}{4^{-2}} = 16
\]
3. Calculate \( 15^{0} \):
\[
15^{0} = 1
\]
4. Calculate \( 10^{1} \):
\[
10^{1} = 10
\]
5. Now, combine all the results:
\[
3^{-2} + \frac{1}{4^{-2}} + 15^{0} - 10^{1} = \frac{1}{9} + 16 + 1 - 10
\]
Simplifying this:
\[
= \frac{1}{9} + 7
\]
Converting 7 to a fraction with a denominator of 9:
\[
7 = \frac{63}{9}
\]
Therefore:
\[
\frac{1}{9} + \frac{63}{9} = \frac{64}{9}
\]
### Result for Part c:
\[
\frac{64}{9} \quad \text{or} \quad 7\frac{1}{9} \quad \text{or} \quad 7.\dot{1}
\]
---
### Summary of Results:
- Part a: \( \frac{3}{8} \) or \( 0.375 \)
- Part b: \( \frac{3}{4} \) or \( 0.75 \)
- Part c: \( \frac{64}{9} \) or \( 7\frac{1}{9} \) or \( 7.\dot{1} \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution