Question
7. Prove the following identity by manipulating the left side: \( \frac{\tan \theta}{1+\sin \theta}+\cot \theta=\frac{\tan \theta+\cot \theta+\cos \theta}{1+\sin \theta} \)
Ask by Lambert Perkins. in the United States
Dec 03,2024
Upstudy AI Solution
Tutor-Verified Answer
Answer
To prove the identity, we manipulate the left side by using the definitions of \(\tan \theta\) and \(\cot \theta\), and then simplify the expression to match the right side of the identity.
Solution
To prove the identity
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta = \frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta},
\]
we will manipulate the left side and show that it equals the right side.
Starting with the left side:
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta.
\]
Recall the definitions of \(\tan \theta\) and \(\cot \theta\):
\[
\tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}.
\]
Substituting these definitions into the left side gives:
\[
\frac{\frac{\sin \theta}{\cos \theta}}{1+\sin \theta} + \frac{\cos \theta}{\sin \theta}.
\]
To combine these fractions, we need a common denominator. The common denominator will be \((1+\sin \theta)\sin \theta\). Thus, we rewrite each term:
1. The first term becomes:
\[
\frac{\sin \theta}{\cos \theta(1+\sin \theta)}.
\]
2. The second term becomes:
\[
\frac{\cos \theta(1+\sin \theta)}{\sin \theta(1+\sin \theta)} = \frac{\cos \theta + \cos \theta \sin \theta}{\sin \theta(1+\sin \theta)}.
\]
Now we can combine these two fractions:
\[
\frac{\sin \theta + \cos \theta + \cos \theta \sin \theta}{\sin \theta(1+\sin \theta)}.
\]
Now, we can simplify the numerator:
\[
\sin \theta + \cos \theta + \cos \theta \sin \theta = \tan \theta + \cot \theta + \cos \theta.
\]
Thus, we have:
\[
\frac{\tan \theta + \cot \theta + \cos \theta}{\sin \theta(1+\sin \theta)}.
\]
Now, we need to express this in terms of the right side of the original identity. The right side is:
\[
\frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
To show that both sides are equal, we can multiply the left side by \(\frac{1+\sin \theta}{\sin \theta}\):
\[
\frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
Thus, we have shown that:
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta = \frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
Therefore, the identity is proven:
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta = \frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
This completes the proof.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg

