Pregunta
7. Prove the following identity by manipulating the left side: \( \frac{\tan \theta}{1+\sin \theta}+\cot \theta=\frac{\tan \theta+\cot \theta+\cos \theta}{1+\sin \theta} \)
Ask by Lambert Perkins. in the United States
Dec 03,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
To prove the identity, we manipulate the left side by using the definitions of \(\tan \theta\) and \(\cot \theta\), and then simplify the expression to match the right side of the identity.
Solución
To prove the identity
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta = \frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta},
\]
we will manipulate the left side and show that it equals the right side.
Starting with the left side:
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta.
\]
Recall the definitions of \(\tan \theta\) and \(\cot \theta\):
\[
\tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}.
\]
Substituting these definitions into the left side gives:
\[
\frac{\frac{\sin \theta}{\cos \theta}}{1+\sin \theta} + \frac{\cos \theta}{\sin \theta}.
\]
To combine these fractions, we need a common denominator. The common denominator will be \((1+\sin \theta)\sin \theta\). Thus, we rewrite each term:
1. The first term becomes:
\[
\frac{\sin \theta}{\cos \theta(1+\sin \theta)}.
\]
2. The second term becomes:
\[
\frac{\cos \theta(1+\sin \theta)}{\sin \theta(1+\sin \theta)} = \frac{\cos \theta + \cos \theta \sin \theta}{\sin \theta(1+\sin \theta)}.
\]
Now we can combine these two fractions:
\[
\frac{\sin \theta + \cos \theta + \cos \theta \sin \theta}{\sin \theta(1+\sin \theta)}.
\]
Now, we can simplify the numerator:
\[
\sin \theta + \cos \theta + \cos \theta \sin \theta = \tan \theta + \cot \theta + \cos \theta.
\]
Thus, we have:
\[
\frac{\tan \theta + \cot \theta + \cos \theta}{\sin \theta(1+\sin \theta)}.
\]
Now, we need to express this in terms of the right side of the original identity. The right side is:
\[
\frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
To show that both sides are equal, we can multiply the left side by \(\frac{1+\sin \theta}{\sin \theta}\):
\[
\frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
Thus, we have shown that:
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta = \frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
Therefore, the identity is proven:
\[
\frac{\tan \theta}{1+\sin \theta} + \cot \theta = \frac{\tan \theta + \cot \theta + \cos \theta}{1+\sin \theta}.
\]
This completes the proof.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg



¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium