Question
upstudy study bank question image url

24. Halle la curvatura de \( \mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \operatorname{sen} t, t\right\rangle \) en el punto \( (1,0,0) \).

Ask by Spencer Davies. in Colombia
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La curvatura en el punto \((1,0,0)\) es \(\frac{2\sqrt{2}}{3\sqrt{3}}\).

Solution

Sea la curva \[ \mathbf{r}(t)=\langle e^{t}\cos t,\; e^{t}\sin t,\; t\rangle. \] Se requiere hallar la curvatura \(\kappa\) en el punto \((1,0,0)\). ### Paso 1. Determinar \(t\) correspondiente al punto La tercera componente de \(\mathbf{r}(t)\) es \(t\). Para que \[ \mathbf{r}(t)=(1,0,0) \] se debe tener \[ t=0. \] Verificamos las otras componentes en \(t=0\): \[ x(0)=e^{0}\cos 0=1\quad\text{y}\quad y(0)=e^{0}\sin 0=0. \] Por lo tanto, el punto \((1,0,0)\) corresponde a \(t=0\). ### Paso 2. Calcular \(\mathbf{r}'(t)\) y \(\mathbf{r}''(t)\) Se tienen las componentes: \[ x(t)=e^{t}\cos t,\quad y(t)=e^{t}\sin t,\quad z(t)=t. \] **Derivada primera:** Calculamos \[ x'(t)=\frac{d}{dt}\big(e^{t}\cos t\big)= e^{t}\cos t - e^{t}\sin t= e^{t}(\cos t - \sin t), \] \[ y'(t)=\frac{d}{dt}\big(e^{t}\sin t\big)= e^{t}\sin t + e^{t}\cos t= e^{t}(\sin t + \cos t), \] \[ z'(t)=1. \] Por lo tanto, \[ \mathbf{r}'(t)=\langle e^{t}(\cos t-\sin t),\; e^{t}(\sin t+\cos t),\; 1\rangle. \] **Derivada segunda:** Calculamos cada componente: Para \(x''(t)\): \[ x''(t)=\frac{d}{dt}\big(e^{t}(\cos t-\sin t)\big)= e^{t}(\cos t-\sin t) + e^{t}(-\sin t-\cos t)= -2e^{t}\sin t. \] Para \(y''(t)\): \[ y''(t)=\frac{d}{dt}\big(e^{t}(\sin t+\cos t)\big)= e^{t}(\sin t+\cos t) + e^{t}(\cos t-\sin t)= 2e^{t}\cos t. \] Para \(z''(t)\): \[ z''(t)=0. \] Por lo tanto, \[ \mathbf{r}''(t)=\langle -2e^{t}\sin t,\; 2e^{t}\cos t,\; 0 \rangle. \] ### Paso 3. Calcular el producto cruzado \(\mathbf{r}'(t) \times \mathbf{r}''(t)\) Sea \[ \mathbf{r}'(t)=\langle A,\, B,\, 1\rangle \quad\text{con}\quad A= e^{t}(\cos t-\sin t),\quad B=e^{t}(\sin t+\cos t), \] y \[ \mathbf{r}''(t)=\langle C,\, D,\, 0\rangle \quad\text{con}\quad C=-2e^{t}\sin t,\quad D= 2e^{t}\cos t. \] El producto cruzado es: \[ \mathbf{r}'(t) \times \mathbf{r}''(t)= \langle B\cdot 0 - 1\cdot D,\; 1\cdot C - A\cdot 0,\; A\cdot D - B\cdot C \rangle. \] Esto resulta en: \[ \mathbf{r}'(t) \times \mathbf{r}''(t)= \langle -D,\; C,\; A D - B C \rangle. \] Sustituyendo \(C\) y \(D\): \[ \text{Primer componente: } -D=-2e^{t}\cos t. \] \[ \text{Segunda componente: } C=-2e^{t}\sin t. \] Para la tercera componente: \[ A\cdot D - B\cdot C= e^{t}(\cos t-\sin t)\cdot (2e^{t}\cos t) - e^{t}(\sin t+\cos t)\cdot (-2e^{t}\sin t). \] Simplificando: \[ = 2e^{2t}\big[\cos t(\cos t-\sin t) + \sin t(\sin t+\cos t) \big]. \] Observamos que: \[ \cos t(\cos t-\sin t) + \sin t(\sin t+\cos t)= \cos^{2}t - \cos t\sin t+ \sin^{2}t+ \sin t\cos t = \cos^{2}t+ \sin^{2}t= 1. \] Por lo tanto, la tercera componente es: \[ 2e^{2t}. \] Así, \[ \mathbf{r}'(t) \times \mathbf{r}''(t)=\langle -2e^{t}\cos t,\; -2e^{t}\sin t,\; 2e^{2t} \rangle. \] ### Paso 4. Calcular la norma de \(\mathbf{r}'(t) \times \mathbf{r}''(t)\) La norma es: \[ \|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = \sqrt{(-2e^{t}\cos t)^2 + (-2e^{t}\sin t)^2 + (2e^{2t})^2}. \] Calculamos cada término: \[ (-2e^{t}\cos t)^2= 4e^{2t}\cos^{2}t,\quad (-2e^{t}\sin t)^2= 4e^{2t}\sin^{2}t,\quad (2e^{2t})^2= 4e^{4t}. \] Entonces: \[ \|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = \sqrt{4e^{2t}(\cos^{2}t+\sin^{2}t)+ 4e^{4t}} = \sqrt{4e^{2t}+ 4e^{4t}}. \] Factorizando: \[ = 2\sqrt{e^{2t}+ e^{4t}}= 2e^{t}\sqrt{1+ e^{2t}}. \] ### Paso 5. Calcular la norma de \(\mathbf{r}'(t)\) Con \(\mathbf{r}'(t)=\langle e^{t}(\cos t-\sin t),\; e^{t}(\sin t+\cos t),\; 1 \rangle\), se tiene: \[ \|\mathbf{r}'(t)\|^2 = \big[e^{t}(\cos t-\sin t)\big]^2 + \big[e^{t}(\sin t+\cos t)\big]^2 + 1^2. \] Calculemos los dos primeros términos: \[ (\cos t-\sin t)^2 = \cos^{2}t - 2\sin t\cos t + \sin^{2}t, \] \[ (\sin t+\cos t)^2 = \sin^{2}t + 2\sin t\cos t + \cos^{2}t. \] La suma es: \[ (\cos t-\sin t)^2+(\sin t+\cos t)^2 = 2(\cos^{2}t+\sin^{2}t)= 2. \] Por lo tanto: \[ \|\mathbf{r}'(t)\|^2 = 2e^{2t}+ 1 \quad\Longrightarrow\quad \|\mathbf{r}'(t)\| = \sqrt{2e^{2t}+ 1}. \] ### Paso 6. Aplicar la fórmula de la curvatura La curvatura viene dada por: \[ \kappa(t)= \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}. \] Sustituimos los resultados obtenidos: \[ \kappa(t)= \frac{2e^{t}\sqrt{1+ e^{2t}}}{\big( \sqrt{2e^{2t}+ 1} \big)^3} = \frac{2e^{t}\sqrt{1+ e^{2t}}}{\big(2e^{2t}+ 1\big)^{3/2}}. \] ### Paso 7. Evaluar la curvatura en \(t=0\) Sustituyendo \(t=0\), se tiene: \[ e^{0}=1,\quad e^{2\cdot0}=1. \] Entonces: \[ \kappa(0)= \frac{2\cdot1\cdot\sqrt{1+1}}{\big(2\cdot1+ 1\big)^{3/2}} = \frac{2\sqrt{2}}{3^{3/2}}. \] Observando que \(3^{3/2}= 3\sqrt{3}\), se obtiene: \[ \kappa(0)= \frac{2\sqrt{2}}{3\sqrt{3}}. \] ### Respuesta Final La curvatura de \(\mathbf{r}(t)\) en el punto \((1,0,0)\) es: \[ \boxed{\frac{2\sqrt{2}}{3\sqrt{3}}}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Para encontrar la curvatura de la curva parametrizada por \( \mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \sin t, t\right\rangle \) en el punto \( (1,0,0) \), primero necesitamos determinar el valor de \( t \) correspondiente a ese punto. Observando las componentes, notamos que: - En \( t = 0 \): \[ \mathbf{r}(0) = \left\langle e^{0} \cos(0), e^{0} \sin(0), 0 \right\rangle = \left\langle 1, 0, 0 \right\rangle \] Así que \( t = 0 \) corresponde al punto \( (1,0,0) \). Ahora, para calcular la curvatura \( \kappa \), necesitaremos la primera y segunda derivadas de \( \mathbf{r}(t) \): 1. **Primera derivada \( \mathbf{r}'(t) \)**: \[ \mathbf{r}'(t) = \frac{d}{dt} \left\langle e^{t} \cos t, e^{t} \sin t, t \right\rangle = \left\langle e^{t} \cos t - e^{t} \sin t, e^{t} \sin t + e^{t} \cos t, 1 \right\rangle \] Evaluando en \( t = 0 \): \[ \mathbf{r}'(0) = \left\langle 1, 1, 1 \right\rangle \] 2. **Segunda derivada \( \mathbf{r}''(t) \)**: \[ \mathbf{r}''(t) = \frac{d}{dt} \left\langle e^{t} (\cos t - \sin t), e^{t} (\sin t + \cos t), 1 \right\rangle \] Calculando componente a componente, tenemos: \[ \mathbf{r}''(t) = \left\langle e^{t} (\cos t - \sin t) + e^{t} (-\sin t - \cos t), e^{t} (\sin t + \cos t) + e^{t} (\cos t - \sin t), 0 \right\rangle \] Lo que simplificado nos da: \[ \mathbf{r}''(t) = \left\langle -2e^{t} \sin t, 2e^{t} \cos t, 0 \right\rangle \] Evaluando en \( t = 0 \): \[ \mathbf{r}''(0) = \left\langle 0, 2, 0 \right\rangle \] 3. **Producto cruzado y norma**: La curvatura está dada por: \[ \kappa = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3} \] Calculamos el producto cruzado: \[ \mathbf{r}'(0) \times \mathbf{r}''(0) = \left\langle 1, 1, 1 \right\rangle \times \left\langle 0, 2, 0 \right\rangle = \left\langle 1(0) - 1(2), 1(0) - 1(0), 1(2) - 1(0) \right\rangle = \left\langle -2, 0, 2 \right\rangle \] Calculamos la norma del producto cruzado: \[ ||\mathbf{r}'(0) \times \mathbf{r}''(0)|| = \sqrt{(-2)^2 + 0^2 + 2^2} = \sqrt{4 + 0 + 4} = \sqrt{8} = 2\sqrt{2} \] Ahora calculamos la norma de la primera derivada: \[ ||\mathbf{r}'(0)|| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] Por lo tanto, \( ||\mathbf{r}'(0)||^3 = (\sqrt{3})^3 = 3\sqrt{3} \). Finalmente, la curvatura: \[ \kappa = \frac{2\sqrt{2}}{3\sqrt{3}}

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy